Selection

Chapter 9

/I

© 2004 Goodrich, Tamassia

Selection

The Median Problem

Given n elements Xy, X5, ..., X, taken from a
total order, find the median of this set.

Of course, we can sort the set in O(n log n) time
and then index the (n/2)-th element.

N

(74962524679 |]

Can we solve this problem faster?
It's easier if we generalize the problem!

© 2004 Goodrich, Tamassia Selection 2

The Selection Problem

N

Given an integer k and n elements Xy, X5, ..., X,
taken from a total order, find the k-th smallest
element in this set.

Again, we can sort the set in O(n log n) time
and then index the k-th element.

k=2 (74962524679 |

Adding k to the problem gives us flexibility when
doing recursion.

© 2004 Goodrich, Tamassia Selection 3

Quick-Select

Quick-select is a randomized
selection algorithm based on

N

the prune-and-search §
paradigm:
= Prune: pick a random element x
(called pivot) and partition S into
+ L: elements less than x X
+ E: elements equal x \ Y el Y -\ Y /
+ G: elements greater than x L E G
= Search: depending on k, either k < IL| I k> |L|+|E]|
answer is in E, or we need to k’=k-|L|- |E]|
recur in either L or G
L[< k < [L|+[E]
(done)

© 2004 Goodrich, Tamassia Selection 4

]

Partition L

N

@ We partition an input Algorithm partition(S, p)
seqguence as in the quick-sort Input sequence S, position p of pivot
algorithm: Output subsequences L, E, G of the
: h elements of S less than, equal to,
= We remove, in turn, eac or greater than the pivot, resp.

element y from S and

m WeinsertyintolL, EorG,
depending on the result of
the comparison with the
pivot X

L, E, G « empty sequences
X «— S.erase(p)
while =S.empty()

y « S.eraseFront()

Each inser_tior) and removal is Ifyi,;(nsertBack(y)
at the beginning or at the else if y = X
end of a sequence, and E.insertBack(y)
hence takes O(1) time else {y>x}

Thus, the partition step of G.insertBack(y)
quick-select takes O(n) time return L, E, G

© 2004 Goodrich, Tamassia Selection 5

Quick-Select Visualization

" @ An execution of quick-select can be visualized by a
recursion path

= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5,5=(7 4 93265 1 8)

N

([k=2,5=(7 4 9 6 5 8) |

(k=2,5=(7 4 6 5)]

k=1, S=(7 6 5)]

L5]

© 2004 Goodrich, Tamassia Selection

Expected Running Time

Consider a recursive call of quick-select on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

(72943761 | 72943761]
(2431] (797] 1) (7294376)
Good call Bad call

A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
\ J \ ~ I N —

Bad pivots Good pivots Bad pivots

© 2004 Goodrich, Tamassia Selection 7

Expected Running Time,
Part 2

& Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

Probabilistic Fact #2: Expectation is a linear function:
s E(X+Y)=EX)+E(Y)
a E(cX)=CcE(X)
Let T(n) denote the expected running time of quick-select.
By Fact #2,
s T(n) <T(3n/4) + bn * (expected # of calls before a good call)
#® By Fact #1,
s T(n) <T(3n/4) + 2bn
That is, by plug-and-chug, T(n) is a geometric series:
= T(n) < 2bn + 2b(3/4)n + 2b(3/4)?n + 2b(3/4)3n + ...
#® So T(n) is O(n).
QuickSelect solves the selection problem in O(n) expected

time.
© 2004 Goodrich, Tamassia Selection 8

N

Deterministic Selection

We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

= Divide S into n/5 sets of 5 each
s Find a median in each set
= Recursively find the median of the “baby” medians.

N

Min size
forL .

! ' Min size
- for G

U'I-I>ILAJI\J|—L
U'I-bw:l\)l—l

© 2004 Goodrich, Tamassia Selection 9

N

More slowly...

® We want to select the k-th element of a set S.

@ If Sis small (say, less than 40 elements), sort it and choose the
kth element in the sorted order.

Otherwise:

@ Divide S into [ﬂ sets of at most 5 elements each.

191 131 (63| | 7| |29] |56| [47] |83 |91] |43] |58
41| |55] [27] |82] |83] |26]| |88 [24| (64| [17] |35
41 162| [81] 149 [66] |10| (35| |22 (44| |56]| |41
80| |69] |54| |64 [41| 52| [14]| |70] |32] |61
371 | 5| |55] |35] |38] [42] |59] (92| |6 |75

This can be done in linear time.

© 2019 Shermer Selection 10

More slowly...

N

@ Find the median of each set, by sorting each set.

4 511271 | 7] |29] |10] (14| |22 [6| |17] |35
19((31| [54] |35] |38] |26] |35] |24] 32| (43| |41
37| |55] |55] |49] |41]| (42| |47]| |70] |44]| [56]| |58
41| |62 |63 |64] |66] |52]| [59] 83| |64 |61
80| |69 [81] |82 |83] [56| |88] [92] |91 |75

We'll call these medians the representative of their respective sets.

Sorting up to five elements takes O(1) time, so in total this step is

© 2019 Shermer Selection 11

N

More slowly...

@ Recursively find the median m of the representatives.

4 6| [10] |29] |14 | 7| |22| |27| |17 | 5
191 [35] [32] [26] |38 |35 [35] [24] [54] [43] [31
37| |41] [44] |42| (41| |47 [49] [70(|55] |56] |55
41| 58] (64| |52] |66 |59 [64] 83| [63]| [61] |62

80 91| |56 |83 |88 |82 |92| |81]| |75| |69

Since there are [ﬂ representatives, this takes time T(m).

© 2019 Shermer Selection

12

More slowly...

N

Partition the entire set S into
sets L, E, and G, using m as the

pivot. This takes linear time. m
\)\]\ y;
#® Then: [é EE

m < '
LT

s If |L| < k < [L]+]E|, m is the k*=k-|L|-|E]
k-th element, and we are IL| < k <|L|+|E|
done. (done)

s If [L] + |E| < Kk, recurse to
find the (k - |L| - |E|)-th
element of G.

© 2019 Shermer Selection 13

More slowly...

N

@ The recursion takes time T(|L|) or T(|G|).
4 But we can bound |L| and |G|:

4 6| [10] |29] [14||]| 7 | |22]| |27| |17| |5
1911351821126 11381 [351] | 35| | 24| | 54| |43 | |31
37| |41] [44]| |42| |41]| |47|||49] 70| |55]| |56] |55
41| |58 |64 |52] |66] [59] [64| |83] [63]| |61 |62
80 91| |56 |83 |88 |82 |92| |81]| |75| |69

® The > % elements highlighted here must all be less than or
equal to m. In the partition, these go into L or E. Thus |G| <

3n

4

4 By a similar argument, |L| < %.

© 2019 Shermer Selection 14

N

More slowly...

@ So the final recursion step takes time at most T(%n).
Adding up the work, we get:

{ b n < 40
T(n) < LT(An/5) + T(3n/4) + bn otherwise

This is a cool recurrence. We'll solve it by the guess-and-verify
method. I'm going to guess that T(n) < cn. My induction
hypothesis is that that is true for n” < n. The basis implies that my
¢ must be at least b.

By the induction hypothesis,
T(n) < cn/5]+ c(3n/4) + bn

© 2019 Shermer Selection 15

N

More slowly...

Since[n/5]< (n/5) + 1, we have
T(n) < ¢(n/5) + ¢ + ¢(3n/4) + bn
or
T(n) < c(4n/20) + c(15n/20) + c + bn
= ¢(19n/20) + c + bn

< ¢(19n/20) + (n/40)c + bn
= ¢(39n/40) + bn
< cn, provided b < (1/40)c, or c = 40b.

Since we can choose our ¢ to be equal to 40b, we have just shown
that T(n) < cn, by induction.

Thus, selection can be done deterministically in linear time.

© 2019 Shermer Selection 16

