N

Solving Recurrences

T(n) < cn + T(n/5) + T(3n/4)

— T(n) € O(n)

AN

Solving Recurrences

Merge-Sort Review

p
\J
Merge-sort on an input
sequence S with n Algorithm mergeSort(S, C)
elements consists of Input sequence S with n
three steps: elements, comparator C
= Divide: partition S into Output sequence S sorted
two sequences S, and S, according to C
of about n/2 elements if S.size() > 1
each ' .
_ : (S1; S,) « partition(S, n/2) DN
= Recur: recursively sort
S, and S, mergeSort(S,, C) T(n/2)
= Conquer: merge S, and mergesSort(S,, C) T(n/2)
S, into a unique sorted S < merge(S,, S,) b,n
sequence

© 2004 Goodrich, Tamassia Solving Recurrences 2

),

o)
Recurrence Equation Analysis [gss

\

N

The divide step of merge-sort can be accomplished by walking
through the given sequence and placing elements into the two
subsequences. This takes at most b;n steps, for some constant b;.

#® The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly-linked list: takes at most b,n steps, for some constant b,.

Likewise, the basis case (n < 2) will take at most b, steps.
Therefore, if we let T(n) denote the running time of merge-sort:

(b if n<2
2T(n/2)+bn 1fn=2

We can analyze the running time of merge-sort by finding a
closed-form solution to the above equation.

= That is, a solution that has T(n) only on the left-hand side.

& @

T(n)=+

© 2004 Goodrich, Tamassia Solving Recurrences 3

[terative Substitution

In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can

find a pattern: T(n) =2T(n/2)+bn
= 2(2T(n/22) +b(n/2))+bn
=2°T(n/2%)+2bn
= 23T(n/2%) + 3bn
=2'T(n/2%) +4bn

N

=2'T(n/2") +ibn
Note that base, T(1)=Db, case occurs when 2'=n. That is, i = log n.

¢ So, T(n) =bn-+bnlogn

#® Thus, T(n) is O(n log n).

© 2004 Goodrich, Tamassia Solving Recurrences 4

The Recursion Tree

Draw the recursion tree for the recurrence relation and look

pattern:
b ifn<?2
T(n)= .
2T(n/2)+bn ifn>2

N

—h

or a

depth T's size time
0 1 n [] bn
1 2 n/2 [] [] bn
[] bn

i 21 n/2!

N —
AN N N
o o N R e e R e

Total time = bn +bnlog n
(last level plus all previous levels)

© 2004 Goodrich, Tamassia Solving Recurrences 5

Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

b ifn<2
T(n)= .
2T(n/2)+bnlogn ifn>2

Guess: T(n) < cn log n.
T(n)=2T(n/2)+bnlogn
< 2(c(n/2)log(n/2))+bnlogn
=cn(logn—log2) + bnlogn
=cnlogn—-cn+bnlogn

N

Wrong: we cannot make this last line be less than cn log n
for all n = some constant.

© 2004 Goodrich, Tamassia Solving Recurrences 6

Guess-and-Test Method, (cont.)

Recall the recurrence equation:

b ifn<2
T(n)= .
2T(n/2)+bnlogn ifn>2

@ Guess #2: T(n) < cn log? n.
T(n)=2T(n/2)+bnlogn

< 2(c(n/2)log®(n/2))+bnlogn
=cn(logn—log2)* +bnlogn

N

=cnlog®n—2cnlogn+cn+bnlogn

<cnlog®n
m ifc>Dh.
So, T(n) is O(n log? n).

In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

© 2004 Goodrich, Tamassia Solving Recurrences 7

Master Method (Section 4.3)

Many divide-and-conquer recurrence equations have
the form:

o c it n<d
(n)_{aT(n/b)+ fn) ifn>d

N

The Master Theorem (case 2 different from text)
1. if f(n)isO(n'"****), then T (n) is ®(n"%?)

2. if f(n)is®(n"**log" n), then T (n) is ®(n"**log"** n)
3. if f(n)is Q(n"***), then T (n)is O(f (n)),
provided af (n/b) <df (n) forsomeo <1.

© 2004 Goodrich, Tamassia Solving Recurrences 8

Master Method, Example 1 @

" The form: T(n) = ¢ Ifn<d
atT(n/b)+ f(n) ifnx>d

The Master Theorem:
1. if f(n)isO(n"****), then T (n) is ®(n""%*?)
2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)
3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.

#® E le:
T T () =4T(n/2)+n

N

Solution: log,a=2, so case 1 says T(n) is ©(n?).

© 2004 Goodrich, Tamassia Solving Recurrences 9

Master Method, Example 2 @

" The form: T(n) = ¢ Ifn<d
atT(n/b)+ f(n) ifnx>d

The Master Theorem:
1. if f(n)isO(n"****), then T (n) is ®(n""%*?)
2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)
3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.
Example:

T(n)=2T(n/2)+nlogn

Solution: log,a=1, so case 2 says T(n) is ©(n log? n).

N

© 2004 Goodrich, Tamassia Solving Recurrences 10

Master Method, Example 3 @

" The form: T(n) = ¢ Ifn<d
atT(n/b)+ f(n) ifnx>d

N

The Master Theorem:
1. if f(n)isO(n'®**), then T (n) is ©(n"%*?)

3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.
Example:

T(nN)=T(n/3)+nlogn

2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)

af(n/b) = 1((n/3) log(n/3))
< (n/3) log n
<(1/3) nlogn

Solution: log,a=0, so case 3 says T(n) is ©(n log n).

© 2004 Goodrich, Tamassia Solving Recurrences

11

Master Method, Example 4 €

J@ The form: T(n):{ ¢ It n<d

N

atT(n/b)+ f(n) ifnx>d
The Master Theorem:
1. if f(n)isO(n"****), then T (n) is ®(n""%*?)
2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)
3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.
Example:

T(n)=8T(n/2)+n?

Solution: log,a=3, so case 1 says T(n) is ©(n3).

© 2004 Goodrich, Tamassia Solving Recurrences 12

Master Method, Example 5 @

" The form: T(n) = ¢ Ifn<d
atT(n/b)+ f(n) ifnx>d

N

The Master Theorem:
1. if f(n)isO(n'®**), then T (n) is ©(n"%*?)

3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.
Example:

T(N)=9T(n/3)+n’

2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)

af(n/b) = 9(n3/33)
= (9/27) n3
= (1/3) n3

Solution: log,a=2, so case 3 says T(n) is ©(n3).

© 2004 Goodrich, Tamassia Solving Recurrences

13

Master Method, Example 6 @

" The form: T (Y= c Ifn<d
atT(n/b)+ f(n) ifnx>d

The Master Theorem:
1. if f(n)isO(n"****), then T (n) is ®(n""%*?)
2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)
3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.
Example:

N

T(nN)=T(n/2)+1 (binary search)

Solution: log,a=0, so case 2 says T(n) is ©(log n).

© 2004 Goodrich, Tamassia Solving Recurrences 14

Master Method, Example 7 @

" The form: T (Y= c Ifn<d
atT(n/b)+ f(n) ifnx>d

The Master Theorem:
1. if f(n)isO(n"****), then T (n) is ®(n""%*?)
2. if £(n)is ®(n"**log* n), then T (n) is ®(n"*** log“** n)
3. if f(n)is Q(n"%**), then T (n) is O(f (n)),
provided af (n/b) <of (n) forsomeod <1.
Example:

T(n)=2T(n/2)+logn (heap construction)

Solution: log,a=1, so case 1 says T(n) is O(n).

N

© 2004 Goodrich, Tamassia Solving Recurrences 15

[terative “Proof” of the
Master Theorem

Using iterative substitution, let us see if we can find a pattern:
T(n)=aT(n/b)+ f(n)

=a(aT(n/b*))+ f(n/b))+bn
=a’T(n/b*)+af(n/b)+ f(n)
—a’T(n/b%)+a%f(n/b?)+af (n/b)+ f(n)

N

(log, n)-1

=a""T()+ > a'f(n/b')
i=0
(logy n)-1)
=n"* T @)+ > a'f(n/b')

We then distinguish the three Cases as
= The first term is dominant
= Each term in the summation is the same
= The summation is a geometric series with decreasing terms

© 2004 Goodrich, Tamassia Solving Recurrences 16

Integer Multiplication

N

Algorithm: Multiply two n-bit integers I and J.
= Divide step: Split I and J into high-order and low-order bits

| =1.2"%+1
J=1J,2""+],
= We can then define I*J by multiplying the parts and adding:
|- %3 (- 272 b Y2 (3 2% 5 - 34)
=1,9,2" +M2”’2 +ﬂ2”’2 +1,3,

= S0, T(n) = 4T(n/2) + n, which implies T(n) is O(n?2).

= But that is no better than the algorithm we learned in grade
school.

© 2004 Goodrich, Tamassia Solving Recurrences 17

An Improved Integer
Multiplication Algorithm

N

Algorithm: Multiply two n-bit integers I and J.

= Divide step: Split I and J into high-order and low-order bits
| =1.2" 41,

J=1J,2"+]
= Observe that there is a different way to multiply parts:

%3 =1,3,2"+[(1, - 1), =)+ 1,3, +ﬂ2n/2+ﬁ
=13, 2"+[(1, 3, - 1,3, =1, 3, +1,3.)+1.J +13,]2"% +1,],
=1,3,2"+(1, 3, +1,3.)2"*+1,3J,

= So, T(n) = 3T(n/2) + n, which implies T(n) is O(nl¢9,3), by
the Master Theorem.
= Thus, T(n) is O(n1-283),

© 2004 Goodrich, Tamassia Solving Recurrences 18

