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Solving Recurrences

T(n) ≤ cn + T(n/5) + T(3n/4)

→ T(n)  O(n)
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Merge-Sort Review

Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
◼ Divide: partition S into 

two sequences S1 and S2

of about n/2 elements 
each

◼ Recur: recursively sort 
S1 and S2

◼ Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2)  partition(S, n/2)  

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)

b1n
T(n/2)
T(n/2)
b2n
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Recurrence Equation Analysis
The divide step of merge-sort can be accomplished by walking 
through the given sequence and placing elements into the two 
subsequences.  This takes at most b1n steps, for some constant b1.

The conquer step of merge-sort consists of merging two sorted 
sequences, each with n/2 elements and implemented by means of 
a doubly-linked list: takes at most b2n steps, for some constant b2.

Likewise, the basis case (n < 2) will take at most b3 steps.

Therefore, if we let T(n) denote the running time of merge-sort:

We can analyze the running time of merge-sort by finding a 
closed-form solution to the above equation.
◼ That is, a solution that has T(n) only on the left-hand side.





+


=

2if)2/(2

2if 
)(

nbnnT

nb
nT



© 2004 Goodrich, Tamassia Solving Recurrences 4

Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we 
iteratively apply the recurrence equation to itself and see if we can 
find a pattern:

Note that base, T(1)=b, case occurs when 2i=n. That is, i = log n. 

So,

Thus, T(n) is O(n log n).
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The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a 
pattern: 

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …
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Total time = bn + bn log n

(last level plus all previous levels)
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Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution 
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n 
for all n ≥ some constant.
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Guess-and-Test Method, (cont.)

Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

◼ if c > b.

So, T(n) is O(n log2 n).

In general, to use this method, you need to have a good guess 
and you need to be good at induction proofs.
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Master Method (Section 4.3)
Many divide-and-conquer recurrence equations have 
the form:

The Master Theorem (case 2 different from text)
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Master Method, Example 1
The form:

The Master Theorem:

Example:
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Solution: logba=2, so case 1 says T(n) is Θ(n2).
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Master Method, Example 2
The form:

The Master Theorem:

Example:
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Solution: logba=1, so case 2 says T(n) is Θ(n log2 n).
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Master Method, Example 3
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if 
)(

.1 somefor   )()/(  provided   

)),((is)(then),(is)(if  3.

)log(is)(then),log(is)(if  2.

)(is)(then),(is)(if  1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()( +=

Solution: logba=0, so case 3 says T(n) is Θ(n log n).

af(n/b) = 1((n/3) log(n/3))
≤ (n/3) log n
≤ (1/3) n log n
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Master Method, Example 4
The form:

The Master Theorem:

Example:
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Solution: logba=3, so case 1 says T(n) is Θ(n3).
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Master Method, Example 5
The form:

The Master Theorem:

Example:
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Solution: logba=2, so case 3 says T(n) is Θ(n3).

af(n/b) = 9(n3/33)
= (9/27) n3

= (1/3) n3
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Master Method, Example 6
The form:

The Master Theorem:

Example:
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Solution: logba=0, so case 2 says T(n) is Θ(log n).

(binary search)
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Master Method, Example 7
The form:

The Master Theorem:

Example:
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Solution: logba=1, so case 1 says T(n) is Θ(n).

(heap construction)
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Iterative “Proof” of the 
Master Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
◼ The first term is dominant

◼ Each term in the summation is the same

◼ The summation is a geometric series with decreasing terms
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Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ We can then define I*J by multiplying the parts and adding:

◼ So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

◼ But that is no better than the algorithm we learned in grade 
school.
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An Improved Integer 
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ Observe that there is a different way to multiply parts:

◼ So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by 

the Master Theorem.

◼ Thus, T(n) is O(n1.585).
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