
Solving Recurrences 1

Solving Recurrences

T(n) ≤ cn + T(n/5) + T(3n/4)

→ T(n)  O(n)

© 2004 Goodrich, Tamassia Solving Recurrences 2

Merge-Sort Review

Merge-sort on an input
sequence S with n
elements consists of
three steps:
◼ Divide: partition S into

two sequences S1 and S2

of about n/2 elements
each

◼ Recur: recursively sort
S1 and S2

◼ Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2)  partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)

b1n
T(n/2)
T(n/2)
b2n

© 2004 Goodrich, Tamassia Solving Recurrences 3

Recurrence Equation Analysis
The divide step of merge-sort can be accomplished by walking
through the given sequence and placing elements into the two
subsequences. This takes at most b1n steps, for some constant b1.

The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly-linked list: takes at most b2n steps, for some constant b2.

Likewise, the basis case (n < 2) will take at most b3 steps.

Therefore, if we let T(n) denote the running time of merge-sort:

We can analyze the running time of merge-sort by finding a
closed-form solution to the above equation.
◼ That is, a solution that has T(n) only on the left-hand side.





+


=

2if)2/(2

2if
)(

nbnnT

nb
nT

© 2004 Goodrich, Tamassia Solving Recurrences 4

Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern:

Note that base, T(1)=b, case occurs when 2i=n. That is, i = log n.

So,

Thus, T(n) is O(n log n).

ibnnT

bnnT

bnnT

bnnT

bnnbnT

bnnTnT

ii +=

=

+=

+=

+=

++=

+=

)2/(2

...

4)2/(2

3)2/(2

2)2/(2

))2/())2/(2(2

)2/(2)(

44

33

22

2

nbnbnnT log)(+=

© 2004 Goodrich, Tamassia Solving Recurrences 5

The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a
pattern:

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …





+


=

2if)2/(2

2if
)(

nbnnT

nb
nT

time

bn

bn

bn

…

Total time = bn + bn log n

(last level plus all previous levels)

© 2004 Goodrich, Tamassia Solving Recurrences 6

Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n
for all n ≥ some constant.

nbncnncn

nbnncn

nbnnnc

nbnnTnT

loglog

log)2log(log

log))2/log()2/((2

log)2/(2)(

+−=

+−=

+=

+=





+


=

2iflog)2/(2

2if
)(

nnbnnT

nb
nT

<

© 2004 Goodrich, Tamassia Solving Recurrences 7

Guess-and-Test Method, (cont.)

Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

◼ if c > b.

So, T(n) is O(n log2 n).

In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

ncn

nbncnncnncn

nbnncn

nbnnnc

nbnnTnT

2

2

2

2

log

loglog2log

log)2log(log

log))2/(log)2/((2

log)2/(2)(



++−=

+−=

+=

+=





+


=

2iflog)2/(2

2if
)(

nnbnnT

nb
nT

<

© 2004 Goodrich, Tamassia Solving Recurrences 8

Master Method (Section 4.3)
Many divide-and-conquer recurrence equations have
the form:

The Master Theorem (case 2 different from text)





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

© 2004 Goodrich, Tamassia Solving Recurrences 9

Master Method, Example 1
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT +=)2/(4)(

Solution: logba=2, so case 1 says T(n) is Θ(n2).

© 2004 Goodrich, Tamassia Solving Recurrences 10

Master Method, Example 2
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)(+=

Solution: logba=1, so case 2 says T(n) is Θ(n log2 n).

© 2004 Goodrich, Tamassia Solving Recurrences 11

Master Method, Example 3
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()(+=

Solution: logba=0, so case 3 says T(n) is Θ(n log n).

af(n/b) = 1((n/3) log(n/3))
≤ (n/3) log n
≤ (1/3) n log n

© 2004 Goodrich, Tamassia Solving Recurrences 12

Master Method, Example 4
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

2)2/(8)(nnTnT +=

Solution: logba=3, so case 1 says T(n) is Θ(n3).

© 2004 Goodrich, Tamassia Solving Recurrences 13

Master Method, Example 5
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

3)3/(9)(nnTnT +=

Solution: logba=2, so case 3 says T(n) is Θ(n3).

af(n/b) = 9(n3/33)
= (9/27) n3

= (1/3) n3

© 2004 Goodrich, Tamassia Solving Recurrences 14

Master Method, Example 6
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

1)2/()(+= nTnT

Solution: logba=0, so case 2 says T(n) is Θ(log n).

(binary search)

© 2004 Goodrich, Tamassia Solving Recurrences 15

Master Method, Example 7
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT log)2/(2)(+=

Solution: logba=1, so case 1 says T(n) is Θ(n).

(heap construction)

© 2004 Goodrich, Tamassia Solving Recurrences 16

Iterative “Proof” of the
Master Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
◼ The first term is dominant

◼ Each term in the summation is the same

◼ The summation is a geometric series with decreasing terms




−

=

−

=

+=

+=

=

+++=

++=

++=

+=

1)(log

0

log

1)(log

0

log

2233

22

2

)/()1(

)/()1(

. . .

)()/()/()/(

)()/()/(

))/())/((

)()/()(

n

i

iia

n

i

iin

b

b

b

b

bnfaTn

bnfaTa

nfbnafbnfabnTa

nfbnafbnTa

bnbnfbnaTa

nfbnaTnT

© 2004 Goodrich, Tamassia Solving Recurrences 17

Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ We can then define I*J by multiplying the parts and adding:

◼ So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

◼ But that is no better than the algorithm we learned in grade
school.

l

n

h

l

n

h

JJJ

III

+=

+=

2/

2/

2

2

ll

n

hl

n

lh

n

hh

l

n

hl

n

h

JIJIJIJI

JJIIJI

+++=

++=

2/2/

2/2/

222

)2(*)2(*

© 2004 Goodrich, Tamassia Solving Recurrences 18

An Improved Integer
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ Observe that there is a different way to multiply parts:

◼ So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by

the Master Theorem.

◼ Thus, T(n) is O(n1.585).

l

n

h

l

n

h

JJJ

III

+=

+=

2/

2/

2

2

ll

n

hllh

n

hh

ll

n

llhhhlhhlllh

n

hh

ll

n

llhhhllh

n

hh

JIJIJIJI

JIJIJIJIJIJIJIJI

JIJIJIJJIIJIJI

+++=

++++−−+=

+++−−+=

2/

2/

2/

2)(2

2])[(2

2]))([(2*

