
© 2020 Shermer NP-Completeness III 1

NP-Completeness III

Chapter 34

© 2020 Shermer NP-Completeness III 2

Lecture Overview
• 3SAT, or 3-CNF-SAT

• CLIQUE

• VERTEX-COVER

• Other problems

© 2020 Shermer NP-Completeness III 3

3-Satisfiability
3-CNF-SAT, or 3-SAT, is the problem:

Instance: A boolean formula Φ in 3-CNF
Question: is there a setting of the variables in Φ that causes

Φ to be true?

3-Conjuctive Normal Form is the conjunction (AND) of a finite set of
clauses, where each clause is the disjunction (OR) of three variables
or variable complements.

(x1  x2  x3)  (x2  x4  x5)  ...  ( x2417  x4280  x1589)

Observation: a 3-SAT instance is an instance of SAT. Since SAT is in
NP, we can conclude that 3-SAT is also in NP.

© 2020 Shermer NP-Completeness III 4

Transforming Formula
Satisfiability
We will show that SAT ≤P 3-SAT. We transform an
instance I = Φ of SAT to an instance I' = Φ3 of 3-SAT in
3 steps.

The first step relies on constructing a parse tree of the
formula Φ. A parse tree is a tree that has operations
(the boolean connectives) as nodes, with the arguments
of the operations as children of the nodes. (For more
detail, take CMPT 379!). We will allow variables or their
complements as leaves of the tree.

For example, consider the following formula:

Φ = ((x1 → x2)  ((x1  x3)  x4))  x2

© 2020 Shermer NP-Completeness III 5

Transforming Formula
Satisfiability: Step 1

Φ = ((x1 → x2)  ((x1  x3)  x4))  x2

This formula has the parse tree:

We give each result a
name consisting of y
with a subscript.

Now we will make
clauses in the same
way as we did when
transforming CIRCUIT-
SAT to SAT.

© 2020 Shermer NP-Completeness III 6

Transforming Formula
Satisfiability: Step 1

Φ' = y1  (y1  (y2  x2))
 (y2  (y3  y4))
 (y3  (x1 → x2))
 (y4  y5)
 (y5  (y6  x4))
 (y6  ( x1  x3))

Because the operations in the
tree have at most two
operands, the clauses in Φ'
each have at most three literals
(variable or its complement).

© 2020 Shermer NP-Completeness III 7

Transforming Formula
Satisfiability: Step 2
We will replace each clause in Φ' with an equivalent CNF clause on
the same variables.

Let Φ'i be a clause of Φ' and write out the truth table for Φ'i.

To get a CNF formula for the clause Φ'i, we then just apply
DeMorgan's law:

(y1y2x2)  (y1y2x2)  (y1y2x2)  (y1y2x2)

From "0" entries in the final column of the
truth table, we can pick out a DNF formula
(an OR of ANDs) equivalent to Φ'i:

(y1y2x2)  (y1y2x2)  (y1y2x2) 
(y1y2x2)

© 2020 Shermer NP-Completeness III 8

Transforming Formula
Satisfiability: Step 3
We let Φ'' denote the result of applying this transformation to each
clause. Φ'' is in CNF, and its clauses each have length 1, 2, or 3.

We will add two variables p and q to the formula to construct Φ'''.
For each clause Φ''i:

If Φ''i has 3 literals then we simply add it to Φ'''.
If Φ''i has 2 literals then it is (l1  l2).

Add the two clauses (l1  l2  p) and (l1  l2  p) to Φ'''.
If Φ''i has 1 literal then it is (l1).

Add the four clauses (l1  p  q), (l1  p  q),
(l1  p  q), and (l1  p  q) to Φ'''.

Φ''' is then our desired instance Φ3 of 3SAT.

© 2020 Shermer NP-Completeness III 9

3SAT is NP-Complete
We've just shown that SAT can be reduced to 3SAT. Furthermore,
each of the three steps is straightforward and can be accomplished
in polynomial time:
• Step 1 introduces m variables and m clauses of at most 3 literals

each, giving a formula with m+n variables and m clauses.
• Step 2 replaces each clause in the formula from step one with at

most 8 clauses (as each truth table is on at most 3 variables and
therefore has at most 8 rows).

• Step 3 replaces each clause with at most 4 clauses.
The steps are designed so that the resulting formulae are equivalent
to the input formula Φ, so Φ is a yes instance of SAT iff Φ3 is a yes
instance of 3SAT.

Thus, SAT ≤P 3SAT, so 3SAT is NP-Hard. As it is in NP, it is also
NP-Complete.

© 2020 Shermer NP-Completeness III 10

Clique
3SAT is a relatively easy problem to transform from. There are a lot
of proofs that show 3SAT ≤P X, for some problem X.

We'll look at the Clique Problem.

Given a graph G, a clique of G is a subset V' of its vertices such that
for all distinct x, y  V', (x, y)  E. In other words, a clique is a
subgraph that is a complete graph.

The size of a clique is the number of vertices it
has. The Clique Problem (CLIQUE) is then:

Instance: A graph G and integer k.
Question: Does G have a clique of size k?

© 2020 Shermer NP-Completeness III 11

Clique
To solve CLIQUE, we can look at all

𝑛
𝑘 different sets of size k and

check each in k2 time to see if it is a clique. If k is fixed, this is a
polynomial (O(nk k2)). However, if k is not fixed (say it is around
n/2, for example) this approach runs in superpolynomial time.

Theorem. CLIQUE is NP-Complete.

Proof. CLIQUE is in NP, as a certificate could consist of a list of k
vertices that form a clique in G. Verification would take O(k2) time.

Now we show 3SAT ≤P CLIQUE. Let I be an instance of 3SAT with
formula Φ = C1  C2  ...  Ck. Each clause Cr has exactly three
distinct literals l1

r, l2
r, and l3

r. We shall construct a graph G such that
Φ is satisfiable iff G has a clique of size k.

© 2020 Shermer NP-Completeness III 12

Clique
We construct G = (V, E). For each clause Cr = (l1

r  l2
r  l3

r) we add
three vertices v1

r, v2
r, and v3

r to V. We put an edge between two
vertices vi

r and vj
s if

• vi
r and vj

s are in different triples (i.e., r  s), and
• the corresponding literals li

r and lj
s are consistent – they are not

negations of each other.

We can easily
construct this graph
in polynomial time.

© 2020 Shermer NP-Completeness III 13

Clique
Suppose Φ has a
satisfying
assignment.
Then each clause
has at least one
literal assigned to
"1". We form a subset V' of V by choosing the vertex corresponding
to one such literal for each clause. Then V' must form a clique; any
two vertices of V' are in different clauses, and since they were both
assigned "1" by the solution of Φ, they must be consistent. V' is of
size k, so G has a clique of size k.
Conversely, if G has a clique of size k, it must be one vertex from
each set of three. Since no pair of these vertices are inconsistent,
we can set the truth assignment of the corresponding variable to "1"
(or "0" if the variable is negated). This gives a "1" in each clause.

© 2020 Shermer NP-Completeness III 14

Clique
So we have just shown 3SAT ≤P CLIQUE. So CLIQUE is NP-Hard.
Because it is also in NP, it is NP-Complete. ■

Note that we've shown an instance of 3SAT can be transformed to
a specially-structured instance of CLIQUE. This means both that
the specially-structured CLIQUE instances are themselves NP-Hard
and CLIQUE in general is NP-hard.

This does not work the other way; we cannot take specially-
structured 3SAT instances and transform them. (The instances we
choose might be the easy ones in 3SAT.) We have to transform all
instances of 3SAT into CLIQUE.

Also note that the reduction used the instance of 3SAT but not its
solution. We cannot use the existence (or not) of a solution as an
input to the reduction, as this cannot be determined in polynomial
time, and the reduction must be accomplished in polynomial time.

© 2020 Shermer NP-Completeness III 15

Vertex Cover
Given an undirected graph G=(V, E), a vertex cover of G is a subset
V' of V such that for all (u, v) in E, either u or v (or both) are in V'.
That is, a vertex "covers" all incident edges and the subset V' must
cover all edges in E. The size of a vertex cover V' is |V'|.

We define VERTEX-COVER as:

Instance: Graph G and integer k.
Question: Does G have a vertex cover of size k?

Theorem. VERTEX-COVER is NP-Complete.

Proof. VERTEX-COVER is in NP; simply use
the cover V' as the certificate, and have the
verification algorithm check each edge.

...

© 2020 Shermer NP-Completeness III 16

Vertex Cover
We will show that CLIQUE ≤P VERTEX-COVER. Given an instance I
= (G, k) of CLIQUE, we form an instance I' = (GC, |V| - k) of
VERTEX-COVER.

This reduction can easily be done in polynomial time. We need
only show that G has a clique of size k iff GC has a vertex cover of
size |V| - k.

G GC

© 2020 Shermer NP-Completeness III 17

Vertex Cover
Suppose G has a clique V' of size k. Let V'' = V – V' be all vertices
of G not in V'. V'' has a size of |V| – k. Furthermore, V'' covers all
edges of GC. (Suppose not. Then an edge exists in GC between
two vertices of V', which means there wasn't an edge in G between
these two vertices of V', a contradiction.) Thus GC has a vertex
cover of size |V| – k.

Similarly, suppose GC has a vertex cover V'' of size |V| - k; let V' =
V – V'' and note that V' has size k. V' is also a clique in G, because
if it was missing an edge then there would be an edge between
vertices of V' in GC, meaning V'' was not a vertex cover. ■

G GC

© 2020 Shermer NP-Completeness III 18

Vertex Cover
Vertex Cover is NP-Complete, but it has an approximation
algorithm. This algorithm will not produce a minimum-size vertex
cover for a graph, but it will produce a vertex cover that has size at
most twice the minimum size.

So NP-Completeness is never the end of the story for a problem.
We can always seek polynomial solutions for a restricted version of
the problem or an approximation algorithm for the general
problem.

© 2020 Shermer NP-Completeness III 19

Other Problems
Many problems have been proven to be NP-Complete. We've
shown but a few, but they are basic problems that are all good
candidates for the known NP-Hard problem when we are doing
polynomial reductions to prove NP-Hardness / NP-Completeness.

The text shows all the problems on
the left are NP-Complete. Please
read the remaining proofs there.

HAM-CYCLE we've seen before. TSP is
the Travelling Salesman Problem –
finding a minimum-length route for a
salesman to visit every vertex on a
graph. SUBSET-SUM is a problem of
finding a subset of a set of numbers that
sum to a specific target.

