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NP-Completeness III

Chapter 34
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Lecture Overview
• 3SAT, or 3-CNF-SAT

• CLIQUE

• VERTEX-COVER

• Other problems
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3-Satisfiability
3-CNF-SAT, or 3-SAT, is the problem:

Instance:  A boolean formula Φ in 3-CNF
Question:  is there a setting of the variables in Φ that causes

Φ to be true?

3-Conjuctive Normal Form is the conjunction (AND) of a finite set of 
clauses, where each clause is the disjunction (OR) of three variables 
or variable complements.

(x1  x2  x3)  (x2  x4  x5)  ...  ( x2417  x4280  x1589)

Observation: a 3-SAT instance is an instance of SAT.  Since SAT is in 
NP, we can conclude that 3-SAT is also in NP.
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Transforming Formula 
Satisfiability
We will show that SAT ≤P 3-SAT.   We transform an 
instance I = Φ of SAT to an instance I' = Φ3 of 3-SAT in 
3 steps.

The first step relies on constructing a parse tree of the 
formula Φ.   A parse tree is a tree that has operations 
(the boolean connectives) as nodes, with the arguments 
of the operations as children of the nodes.  (For more 
detail, take CMPT 379!).  We will allow variables or their 
complements as leaves of the tree.

For example, consider the following formula:

Φ = ((x1 → x2)  ((x1  x3)  x4))  x2
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Transforming Formula 
Satisfiability: Step 1

Φ = ((x1 → x2)  ((x1  x3)  x4))  x2

This formula has the parse tree:

We give each result a 
name consisting of y 
with a subscript.

Now we will make 
clauses in the same 
way as we did when 
transforming CIRCUIT-
SAT to SAT.
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Transforming Formula 
Satisfiability: Step 1

Φ' = y1  (y1  (y2  x2))
 (y2  (y3  y4))
 (y3  (x1 → x2))
 (y4  y5)
 (y5  (y6  x4))
 (y6  ( x1  x3))

Because the operations in the 
tree have at most two 
operands, the clauses in Φ' 
each have at most three literals
(variable or its complement).
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Transforming Formula 
Satisfiability: Step 2
We will replace each clause in Φ' with an equivalent CNF clause on 
the same variables.  

Let Φ'i be a clause of Φ' and write out the truth table for Φ'i.

To get a CNF formula for the clause Φ'i, we then just apply 
DeMorgan's law:

(y1y2x2)  (y1y2x2)  (y1y2x2)  (y1y2x2) 

From "0" entries in the final column of the 
truth table, we can pick out a DNF formula 
(an OR of ANDs) equivalent to Φ'i:

(y1y2x2)  (y1y2x2)  (y1y2x2) 
(y1y2x2) 
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Transforming Formula 
Satisfiability: Step 3
We let Φ'' denote the result of applying this transformation to each 
clause. Φ'' is in CNF, and its clauses each have length 1, 2, or 3.

We will add two variables p and q to the formula to construct Φ'''.  
For each clause Φ''i:

If Φ''i has 3 literals then we simply add it to Φ'''.
If Φ''i has 2 literals then it is (l1  l2).

Add the two clauses (l1  l2  p) and (l1  l2  p) to Φ'''.
If Φ''i has 1 literal then it is (l1 ).

Add the four clauses (l1  p  q), (l1  p  q),
(l1  p  q), and (l1  p  q) to Φ'''.

Φ''' is then our desired instance Φ3 of 3SAT.
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3SAT is NP-Complete
We've just shown that SAT can be reduced to 3SAT.   Furthermore, 
each of the three steps is straightforward and can be accomplished 
in polynomial time:
• Step 1 introduces m variables and m clauses of at most 3 literals 

each, giving a formula with m+n variables and m clauses.
• Step 2 replaces each clause in the formula from step one with at 

most 8 clauses (as each truth table is on at most 3 variables and 
therefore has at most 8 rows).

• Step 3 replaces each clause with at most 4 clauses.
The steps are designed so that the resulting formulae are equivalent 
to the input formula Φ, so Φ is a yes instance of SAT iff Φ3 is a yes 
instance of 3SAT.

Thus, SAT ≤P 3SAT, so 3SAT is NP-Hard.   As it is in NP, it is also
NP-Complete.
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Clique
3SAT is a relatively easy problem to transform from.   There are a lot 
of proofs that show 3SAT ≤P X, for some problem X.

We'll look at the Clique Problem.

Given a graph G, a clique of G is a subset V' of its vertices such that 
for all distinct x, y  V', (x, y)  E.  In other words, a clique is a 
subgraph that is a complete graph.

The size of a clique is the number of vertices it 
has.  The Clique Problem (CLIQUE) is then:

Instance: A graph G and integer k.
Question: Does G have a clique of size k?
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Clique
To solve CLIQUE, we can look at all 

𝑛
𝑘 different sets of size k and 

check each in k2 time to see if it is a clique.  If k is fixed, this is a 
polynomial (O(nk k2)).   However, if k is not fixed (say it is around 
n/2, for example) this approach runs in superpolynomial time. 

Theorem. CLIQUE is NP-Complete.

Proof.  CLIQUE is in NP, as a certificate could consist of a list of k 
vertices that form a clique in G.  Verification would take O(k2) time.

Now we show 3SAT ≤P CLIQUE.   Let I be an instance of 3SAT with 
formula Φ = C1  C2  ...  Ck.  Each clause Cr has exactly three 
distinct literals l1

r, l2
r, and l3

r.  We shall construct a graph G such that 
Φ is satisfiable iff G has a clique of size k.
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Clique
We construct G = (V, E).  For each clause Cr = (l1

r  l2
r  l3

r) we add 
three vertices v1

r, v2
r, and v3

r  to V.  We put an edge between two 
vertices vi

r and vj
s if 

• vi
r and vj

s are in different triples (i.e., r  s), and
• the corresponding literals li

r and lj
s are consistent – they are not 

negations of each other.

We can easily 
construct this graph 
in polynomial time.   
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Clique
Suppose Φ has a 
satisfying 
assignment.   
Then each clause  
has at least one 
literal assigned to
"1".  We form a subset V' of V by choosing the vertex corresponding 
to one such literal for each clause.  Then V' must form a clique; any 
two vertices of V' are in different clauses, and since they were both 
assigned "1" by the solution of Φ, they must be consistent.  V' is of 
size k, so G has a clique of size k.
Conversely, if G has a clique of size k, it must be one vertex from 
each set of three.  Since no pair of these vertices are inconsistent, 
we can set the truth assignment of the corresponding variable to "1" 
(or "0" if the variable is negated).  This gives a "1" in each clause.
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Clique
So we have just shown 3SAT ≤P CLIQUE.  So CLIQUE is NP-Hard.  
Because it is also in NP, it is NP-Complete. ■

Note that we've shown an instance of 3SAT can be transformed to 
a specially-structured instance of CLIQUE.  This means both that 
the specially-structured CLIQUE instances are themselves NP-Hard 
and CLIQUE in general is NP-hard.  

This does not work the other way; we cannot take specially-
structured 3SAT instances and transform them.  (The instances we 
choose might be the easy ones in 3SAT.)  We have to transform all
instances of 3SAT into CLIQUE.

Also note that the reduction used the instance of 3SAT but not its 
solution.  We cannot use the existence (or not) of a solution as an 
input to the reduction, as this cannot be determined in polynomial 
time, and the reduction must be accomplished in polynomial time.



© 2020 Shermer NP-Completeness III 15

Vertex Cover
Given an undirected graph G=(V, E), a vertex cover of G is a subset 
V' of V such that for all (u, v) in E, either u or v (or both) are in V'.  
That is, a vertex "covers" all incident edges and the subset V' must 
cover all edges in E.  The size of a vertex cover V' is |V'|.

We define VERTEX-COVER as:

Instance:  Graph G and integer k.
Question:  Does G have a vertex cover of size k?

Theorem.  VERTEX-COVER is NP-Complete.

Proof. VERTEX-COVER is in NP; simply use 
the cover V' as the certificate, and have the 
verification algorithm check each edge.

...
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Vertex Cover
We will show that CLIQUE ≤P VERTEX-COVER.   Given an instance I 
= (G, k) of CLIQUE, we form an instance I' = (GC, |V| - k) of 
VERTEX-COVER.

This reduction can easily be done in polynomial time.  We need 
only show that G has a clique of size k iff GC has a vertex cover of 
size |V| - k.

G GC
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Vertex Cover
Suppose G has a clique V' of size k.  Let V'' = V – V' be all vertices 
of G not in V'.  V'' has a size of |V| – k.  Furthermore, V'' covers all 
edges of GC.  (Suppose not. Then an edge exists in GC between 
two vertices of V', which means there wasn't an edge in G between 
these two vertices of V', a contradiction.)  Thus GC has a vertex 
cover of size |V| – k.

Similarly, suppose GC has a vertex cover V'' of size |V| - k; let V' = 
V – V'' and note that V' has size k.   V' is also a clique in G, because 
if it was missing an edge then there would be an edge between 
vertices of V' in GC, meaning V'' was not a vertex cover. ■

G GC
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Vertex Cover
Vertex Cover is NP-Complete, but it has an approximation 
algorithm.   This algorithm will not produce a minimum-size vertex 
cover for a graph, but it will produce a vertex cover that has size at 
most twice the minimum size.

So NP-Completeness is never the end of the story for a problem.   
We can always seek polynomial solutions for a restricted version of 
the problem or an approximation algorithm for the general 
problem.
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Other Problems
Many problems have been proven to be NP-Complete.  We've 
shown but a few, but they are basic problems that are all good 
candidates for the known NP-Hard problem when we are doing 
polynomial reductions to prove NP-Hardness / NP-Completeness.

The text shows all the problems on 
the left are NP-Complete.  Please 
read the remaining proofs there.

HAM-CYCLE we've seen before.   TSP is 
the Travelling Salesman Problem –
finding a minimum-length route for a 
salesman to visit every vertex on a 
graph.  SUBSET-SUM is a problem of 
finding a subset of a set of numbers that 
sum to a specific target.


