
© 2020 Shermer NP-Completeness II 1

NP-Completeness II

Chapter 34

© 2020 Shermer NP-Completeness II 2

Lecture Overview
• Formal Languages as a setting for P and NP

• NP-Completeness

• Boolean Combinational Circuits

• CIRCUIT-SAT is NPC

• Formula Satisfiability (SAT)

• SAT is NPC

© 2020 Shermer NP-Completeness II 3

Formal Language Setting
The text introduces a formal language setting for P and
NP. Let Σ be a finite alphabet (set of characters); then Σ*
denotes the set of strings one can form with characters of
the alphabet.

A (formal) language L is a subset of Σ*.

We could have

• Σ = {a, b} and L = {w | w ends with aba}.

• Σ = ASCII and L = {p | p is a correct C program}.

• Σ = {0, 1} and L = {p | p is a correct ASCII-encoded C
program}

© 2020 Shermer NP-Completeness II 4

Formal Language Setting
In fact, by encoding all characters of Σ into binary, we can
consider all languages to have the alphabet {0, 1}.

Now we can consider problems like Hamiltonian Cycle as
formal languages:

HAM-CYCLE = { w | w is the encoding of a graph
that has a Hamiltonian cycle.}

A language L can be recognized in time T(n) if there is a
program that, given an input string of length n, can
determine if that string is in L in time T(n).

© 2020 Shermer NP-Completeness II 5

Formal Language Setting
P is then the set of all languages that can be recognized in
polynomial time.

NP is the set of all languages L that can be verified in
polynomial time. A language can be verified in time
O(T(n)) if given any string s of length n, there is a
certificate t such that a program given s and t can tell, in
time O(T(n)), whether s is in L.

© 2020 Shermer NP-Completeness II 6

Reductions
A language L1 is called polynomial-time reducible to
language L2, written L1 ≤P L2, if there is a polynomial-time
computable function f such that:

x  L1 iff f(x)  L2.

Lemma. If L1, L2  {0, 1}* are languages such that
L1 ≤P L2, then L2  P implies L1  P.

© 2020 Shermer NP-Completeness II 7

NP-Completeness
A language L  {0, 1}* is NP-Complete if

1. L  NP

2. L' ≤P L for every L'  NP

A language satisfying condition 2 but not condition 1 is
called NP-Hard.

© 2020 Shermer NP-Completeness II 8

Boolean Combinational
Circuits
A Boolean combinational circuit is a circuit composed of
simple Boolean combinational gates, which for our
purposes are NOT, AND, and OR gates.

These gates are connected by wires to each other and to
the circuit inputs and a single output. No loops are
allowed.

© 2020 Shermer NP-Completeness II 9

Circuit Satisfiability
A truth assignment for a BCC is a set of Boolean input
values. A truth assignment is satisfying if it causes the
output to become 1.

The circuit satisfiability problem is: Given a circuit, is there
a satisfying truth assignment for it?

© 2020 Shermer NP-Completeness II 10

Circuit Satisfiability
We'll call the language form of this problem CIRCUIT-SAT.

Lemma. CIRCUIT-SAT is in NP.

Proof. We merely need a polynomial algorithm to verify

CIRCUIT-SAT; this algorithm would take the circuit C (encoded
in some standard form) and a certificate, which could be an
assignment of boolean values to the wires of C. The algorithm
would only need to check each gate to see if the boolean values
on its input wires correctly leads to the boolean value on its
output wire. If all these are correct, it returns the output wire's
boolean value. All this is easily accomplished in time linear in

the size of the graph. ■

© 2020 Shermer NP-Completeness II 11

Representing a Configuration
in a Computation
Suppose we have a computation being done on a computer.
We will call the state of the computation at any one time a
configuration of the computation.

Suppose we are computing membership of x in a language L
that is in NP. We could expect the configuration to look like:

Where PC is the computer's program counter, aux state is
auxilliary state information about the computer (register
contents and so on), x is the string we're determining
membership for, and y is the certificate. Somewhere in working
memory is a location for the result.

A PC Aux State x y working memory

© 2020 Shermer NP-Completeness II 12

Representing a Configuration
in a Computation
We want to represent a configuration in a BCC instance. Since
the configuration is in a computer, it's just a big long sequence
of 0's and 1's. How long? Polynomially long in x.

Each bit in the configuration sequence can be represented by
the boolean value of one wire in the BCC:

When the computer executes an instruction, we step from
one configuration to another:

A PC Aux State x y working memory
...

© 2020 Shermer NP-Completeness II 13

From One Configuration to
Another

That cloudy circuit can be implemented with a bunch of
BCCs...one for each bit in the output configuration. And
each BCC is polynomial-sized in x. Thus the whole cloud is
polynomial-sized in x.

A PC Aux State x y working memory
...

A PC Aux State x y working memory
...

circuit M

© 2020 Shermer NP-Completeness II 14

From One Configuration to
Another
But the computation that A
performs to validate x must
be polynomial in x.

So we get a circuit M' with a
polynomial number of copies
of M from top to bottom.
Since M is polynomial, the
whole construction is
polynomial.

And the final output of the
circuit is simply the location of
working storage meant to
hold the result.

© 2020 Shermer NP-Completeness II 15

Starting Configuration
The algorithm A is known and x is known when we construct M',
which is a function of x. The size of y is known but y is not known.
These unknown bits that comprise y will be the inputs to our BCC
M'.

By "hardwired", we mean the bits are each wired to a circuit that
generates a 1 or a 0, as appropriate to encode A or x. By "0", we
mean all bits are hardwired to 0.

A PC Aux State x y working memory
...

hardwired 0 0hardwired0
inputs

© 2020 Shermer NP-Completeness II 16

Recap
Given a language L in NP, there is an algorithm A that runs in
polynomial time that verifies membership in L in polynomial time,
given an instance x and certificate y.

From A, and x, we construct a Boolean Combinational Circuit M' that
simulates a computer executing A on inputs x and y. The only
inputs of M' are the bits for y.

If A accepts x and y, the computation simulation puts a 1 in the
designated output location, and this means there is a satisfying truth
assignment for the circuit M'.

Since M' is polynomial in the size of x, we have shown that for any L
in NP, L ≤P CIRCUIT-SAT.

Thus, CIRCUIT-SAT is NP-Complete.

© 2020 Shermer NP-Completeness II 17

Formula Satisfiability
Formula Satisfiability, or SAT, is the problem:

Instance: A boolean formula Φ
Question: is there a setting of the variables in Φ that causes

Φ to be true?

The formula consists of

1. n Boolean variables x1, x2, ... , xn;

2. m Boolean connectives: any Boolean function with one or
two inputs and one output, such as  (AND),  (OR),
(NOT), → (IMPLIES), and  (IFF); and

3. parentheses. WLOG we assume that there are no
redundant parentheses, i.e. there is at most one pair of
parentheses per Boolean connective.

© 2020 Shermer NP-Completeness II 18

Formula Satisfiability
An example formula is

Φ = ((x1 → x2)  ((x1  x3)  x4))  x2

This formula is satisfiable; let x1 = 0, x2 =0, x3 = 1, x4 = 1:

Φ = ((0→ 0)  ((0  1)  1))  0

= (1  ((1  1)  1))  1

= (1  (1  1))  1

= 1  1

= 1

It is easy to encode a Boolean formula Φ in a length that is
polynomial in n+m.

© 2020 Shermer NP-Completeness II 19

Formula Satisfiability
Theorem. SAT is NP-Complete.

Proof. First we show SAT  NP. To show this, let C be a certificate
consisting of truth assignments for all variables in formula Φ. The
verification algorithm must then only go through the formula
replacing variables by their assigned Boolean values, and then
evaluate the expression, as we did on the previous slide. This can
easily be done in polynomial time. If the expression evaluates to 1,
the formula is satisfiable. So SAT  NP.

Now we must show that SAT is NP-Hard. We do this by reducing a
known NP-Hard problem to SAT. The only known NP-Hard problem
at this point is CIRCUIT-SAT, so we will show CIRCUIT-SAT ≤P SAT.

So suppose we are given a CIRCUIT-SAT instance I. We transform
this in polynomial time to a SAT instance I' where the answer is the
same.

© 2020 Shermer NP-Completeness II 20

Formula Satisfiability
For each wire in instance I, there is a Boolean value along that wire
in a hypothetical satisfying assignment of inputs for I. We will let
the variables x1, x2, ... xn of I' correspond to the n wires of I. We
then construct a clause of the formula of I' for each gate of I, and
AND all the clauses together with the output wire variable.

Φ = x10  (x4  x3)
 (x5  (x1  x2))
 (x6  x4)
 (x7  (x1  x2  x4))
 (x8  (x5  x6))
 (x9  (x6  x7))
 (x10  (x8  x9  x7))

© 2020 Shermer NP-Completeness II 21

Formula Satisfiability
Each gate's clause having to be true enforces that the variable
corresponding to the gate's output is the correct value given the
gate's inputs. The output variable can be true only if there is some
assignment to the circuit input variables that causes the circuit to
compute true. Thus, if the formula is satisfied, there is a satisfying
input to the circuit.

Similarly, if the circuit has a satisfying input assignment, we can
assign each variable to the value on the corresponding wire of the
circuit. This must be a satisfying assignment because each clause is
satisfied, as can be verified by looking at the corresponding
combinational component of the circuit.

Thus, the instance I of CIRCUIT-SAT is a yes-instance iff the
instance I' of SAT is a yes-instance. So CIRCUIT-SAT ≤P SAT, SAT is
NP-Hard, and SAT is NP-Complete. ■

