
© 2020 Shermer String Matching II 1

String Matching II

Chapter 32

© 2020 Shermer String Matching II 2

Lecture Overview
• String matching with Automata

• DFAs

• String-matching automata

• The transition function

• Knuth-Morris-Pratt

• The prefix function

© 2020 Shermer String Matching II 3

(Deterministic) Finite
Automata
A (deterministic) finite automaton is a mathematical
machine that operates on a string. Formally, it is a 5-tuple
M = (Q, q0, A, Σ, δ) where

• Q is a finite set of states,

• q0  Q is the start state,

• A  Q is the set of accepting states,

• Σ is a finite input alphabet, and

• δ: Q  Σ → Q is the transition function.

© 2020 Shermer String Matching II 4

(Deterministic) Finite
Automata
• Q = {0, 1, 2},

• q0 = 0,

• A = {2},

• Σ = {a, b}

The automaton begins in state q0 and reads the characters of its input
string one at a time. If it is in state q and reads input character a, it
moves ("makes a transition") to state δ(q, a). Whenever its current
state q is in A, the machine is said to have accepted the string read so
far. We are particularly interested in the state that the machine is in
when it has read the entire input string; the machine accepts the string
if it is in an accepting state, otherwise it rejects the string.

δ 0 1 2

a 1 0 1

b 1 2 2

0 1 2
a, b

a
b

ba

© 2020 Shermer String Matching II 5

Final State Function
Given a DFA M = (Q, q0, A, Σ, δ), we can define its final
state function ΦM: Σ* → Q recursively as:

ΦM() = q0

ΦM(wa) = δ(ΦM(w), a) for w  Σ* and a  Σ

ΦM(w) is simply the state that machine M ends up in when
its input string is w.

0 1 2
a, b

a
b

ba

Φ() = 0
Φ(a) = 1
Φ(aa) = 0
Φ(aab) =1
Φ(aaba) = 0

Φ(babb) = 2
Φ(abab) = 2
Φ(abba) = 1
Φ(aba) =1
Φ(abab) = 2

© 2020 Shermer String Matching II 6

String-matching Automata
There is a string-matching automaton MP for every pattern
P. It will be constructed from the pattern in a
preprocessing step and then be used to search the text
string T. We want MP to have the property that ΦM(w)  A
iff P ⊐ w. Then we can find the valid shifts by finding the

accepting states in ΦM for text T and its prefixes.

ababaca

© 2020 Shermer String Matching II 7

Suffix Function
Given a pattern P, we define the suffix function
σ: Σ* → Zm+1 such that σ(x) is the length of the longest
prefix of P that is a suffix of x:

σ(x) = max {k : Pk ⊐ x}

This is well-defined since P0 =  is a suffix of x.

For pattern aba:

σ(baa) = 1
σ(baab) = 2
σ(baba) = 3
σ(babb) = 0

© 2020 Shermer String Matching II 8

String-Matching Automaton
Given a pattern P[1..m], Mp = (Q, q0, A, Σ, δ), where:

• Q = {0, 1, ... m}
• q0 = 0
• A = m
• δ(q, a) = σ(Pqa)

Lemma. This automaton maintains the invariant
Φ(Ti) = σ(Ti)

Proof. Suppose Ti+1 = Tia. Then because Φ(Ti) = σ(Ti),
Φ(Ti+1) = δ(Φ(Ti) , a) = σ(PΦ(Ti) a) = σ(Tia) = σ(Ti+1).
Also, Φ() = 0 = σ(). ■

© 2020 Shermer String Matching II 9

Finite Automaton Matcher
FINITE-AUTOMATON-MATCHER(T, δ, m)

1. n = length(T) O(1)

2. q = 0 O(1)

3. for i = 1 to n n iterations

4. q = δ(q, T[i]) O(1)

5. if q = m O(1)

6. output i – m O(1)

matching time: O(n)

preprocessing time: ?

© 2020 Shermer String Matching II 10

Finite Automaton Matcher

ababaca

© 2020 Shermer String Matching II 11

Transition Function
COMPUTE-TRANSITION-FUNCTION(P, Σ)

1. m = length(P) O(1)
2. for q = 0 to m O(m) iterations
3. for each character a  Σ O(|Σ|) iterations
4. k = min(m+1, q+2) O(1)
5. repeat k = k – 1 O(m) iterations
6. until Pk ⊐ Pqa O(m)

7. δ(q, a) = k O(1)
8. return δ O(1)

total time: O(m3|Σ|)

© 2020 Shermer String Matching II 12

String Matching with
Automata
So string matching with automata takes O(m3|Σ|)
preprocessing and O(n) matching time, for a total of
O(n + m3|Σ|) time.

The automaton construction was not optimal, and in fact it
can be done in optimal O(m|Σ|) time. This is optimal
because m|Σ| is the size of the transition table δ. This
gives a total of O(n + m|Σ|) time.

The next algorithm, Knuth-Morris-Pratt, achieves O(n)
matching time with only O(m) preprocessing time. It
doesn't compute the transition function at all.

© 2020 Shermer String Matching II 13

The Prefix Function
The Knuth-Morris-Pratt (KMP) algorithm uses a prefix
function π that allows a transition to be computed in O(1)
amortized time. One nice thing about π is that it is

independent of the input character and only contains m
elements.

Given a pattern P[1..m], the prefix function π for P maps

{1..m} to {0..m-1} such that:

π[q] = max {k : k<q and Pk ⊐ Pq}

It's the length of the maximum proper prefix of P that is a
suffix of Pq.

© 2020 Shermer String Matching II 14

The Prefix Function

• for q=3, P1 = a is the longest proper prefix of P3 = aba that is also a
suffix.

• for q=4, P2 = ab is the longest proper prefix of P4 = abab that is
also a suffix.

• for q=5, P3 = aba is the longest proper prefix of P5 = ababa that is
also a suffix.

• for q = 6, P0 =  is the longest proper prefix of P6 = ababac that is
also a suffix.

© 2020 Shermer String Matching II 15

Using The Prefix Function

a b a c b a b a b a b a c a a b a b a b b a

0 1 2 3 0 0 1 2 3 4 5 4 5 6 7 1 2 3 4 5 4 0 1

0 1
a

2
b

3
a

4
b

5
a

6
c

7
a

rule: if you fail to go forward,
follow the back edge and do not
consume input character.

back edges to 0 are omitted from diagram.

© 2020 Shermer String Matching II 16

KMP Matcher
KMP-MATCHER(T, P)
1. n = length(T)
2. m = length(P)
3. π = COMPUTE-PREFIX-FUNCTION(P)

4. q = 0
5. for i = 1 to n
6. while q > 0 and P[q+1]  T[i]
7. q = π [q]

8. if P[q+1] = T[i]
9. q = q + 1
10. if q = m
11. output i – m
12. q = π [q]

© 2020 Shermer String Matching II 17

KMP Matcher
KMP-MATCHER(T, P)
1. n = length(T)
2. m = length(P)
3. π = COMPUTE-PREFIX-FUNCTION(P)

4. q = 0
5. for i = 1 to n O(n) iterations
6. while q > 0 and P[q+1]  T[i] ???
7. q = π [q]

8. if P[q+1] = T[i]
9. q = q + 1
10. if q = m O(1)
11. output i – m
12. q = π [q]

© 2020 Shermer String Matching II 18

KMP Matcher
KMP-MATCHER(T, P)
1. n = length(T)
2. m = length(P)
3. π = COMPUTE-PREFIX-FUNCTION(P)

4. q = 0 // invariant: coin on every state < q
5. for i = 1 to n O(n) iterations
6. while q > 0 and P[q+1]  T[i] O(1)
7. q = π [q] // paid for by coin on π [q]

8. if P[q+1] = T[i]
9. q = q + 1 // add a coin to q first
10. if q = m O(1)
11. output i – m
12. q = π [q]

© 2020 Shermer String Matching II 19

Computing the Prefix Function
COMPUTE-PREFIX-FUNCTION(P)
1. m = length(P)
2. π[1] = 0

3. k = 0
4. for q = 2 to m
5. while k > 0 and P[k+1]  P[q]
6. k = π[k]

7. if P[k+1] = P[q]
8. k = k + 1
9. π[q] = k
10.return π

a b a b a c a

q 1 2 3 4 5 6 7

k 0 0 1 2 3 0 1

 0 0 1 2 3 0 1

© 2020 Shermer String Matching II 20

String Matching

