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String Matching II

Chapter 32
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Lecture Overview
• String matching with Automata

• DFAs

• String-matching automata

• The transition function

• Knuth-Morris-Pratt

• The prefix function
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(Deterministic) Finite 
Automata
A (deterministic) finite automaton is a mathematical 
machine that operates on a string.  Formally, it is a 5-tuple 
M = (Q, q0, A, Σ, δ) where

• Q is a finite set of states,

• q0  Q is the start state,

• A  Q is the set of accepting states,

• Σ is a finite input alphabet, and

• δ: Q  Σ → Q is the transition function.
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(Deterministic) Finite 
Automata
• Q = {0, 1, 2},

• q0 = 0,

• A = {2},

• Σ = {a, b}

The automaton begins in state q0 and reads the characters of its input 
string one at a time.  If it is in state q and reads input character a, it 
moves ("makes a transition") to state δ(q, a).  Whenever its current 
state q is in A, the machine is said to have accepted the string read so 
far.  We are particularly interested in the state that the machine is in 
when it has read the entire input string; the machine accepts the string 
if it is in an accepting state, otherwise it rejects the string.

δ 0 1 2

a 1 0 1

b 1 2 2

0 1 2
a, b

a
b

ba
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Final State Function
Given a DFA M = (Q, q0, A, Σ, δ), we can define its final 
state function ΦM: Σ* → Q recursively as:

ΦM() = q0

ΦM(wa) = δ(ΦM(w), a)      for w  Σ* and a  Σ

ΦM(w) is simply the state that machine M ends up in when 
its input string is w.

0 1 2
a, b

a
b

ba

Φ() = 0
Φ(a) = 1
Φ(aa) = 0
Φ(aab) =1
Φ(aaba) = 0

Φ(babb) = 2
Φ(abab) = 2
Φ(abba) = 1
Φ(aba) =1
Φ(abab) = 2
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String-matching Automata
There is a string-matching automaton MP for every pattern 
P.  It will be constructed from the pattern in a 
preprocessing step and then be used to search the text 
string T.  We want MP to have the property that ΦM(w)  A
iff P ⊐ w.  Then we can find the valid shifts by finding the 

accepting states in ΦM for text T and its prefixes.

ababaca
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Suffix Function
Given a pattern P, we define the suffix function 
σ: Σ* → Zm+1 such that σ(x) is the length of the longest 
prefix of P that is a suffix of x:

σ(x) = max {k : Pk ⊐ x}

This is well-defined since P0 =  is a suffix of x.

For pattern aba:

σ(baa) = 1
σ(baab) = 2
σ(baba) = 3
σ(babb) = 0
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String-Matching Automaton
Given a pattern P[1..m], Mp = (Q, q0, A, Σ, δ),  where:

• Q = {0, 1, ... m}
• q0 = 0
• A = m
• δ(q, a) = σ(Pqa)

Lemma. This automaton maintains the invariant
Φ(Ti) = σ(Ti)

Proof.  Suppose Ti+1 = Tia.  Then because Φ(Ti) = σ(Ti), 
Φ(Ti+1) = δ(Φ(Ti) , a) = σ(PΦ(Ti) a) = σ(Tia) = σ(Ti+1).
Also, Φ() = 0 = σ(). ■
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Finite Automaton Matcher
FINITE-AUTOMATON-MATCHER(T, δ, m)

1. n = length(T) O(1)

2. q = 0 O(1)

3. for i = 1 to n n iterations

4. q = δ(q, T[i]) O(1)

5. if q = m O(1)

6. output i – m O(1)

matching time: O(n)

preprocessing time: ?
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Finite Automaton Matcher

ababaca
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Transition Function
COMPUTE-TRANSITION-FUNCTION(P, Σ)

1. m = length(P) O(1)
2. for q = 0 to m O(m) iterations
3. for each character a  Σ O(|Σ|) iterations
4. k = min(m+1, q+2) O(1)
5. repeat k = k – 1 O(m) iterations
6. until Pk ⊐ Pqa                      O(m) 

7. δ(q, a) = k O(1)
8. return δ O(1)

total time: O(m3|Σ|)
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String Matching with 
Automata
So string matching with automata takes O(m3|Σ|) 
preprocessing and O(n) matching time, for a total of
O(n + m3|Σ|) time.

The automaton construction was not optimal, and in fact it 
can be done in optimal O(m|Σ|) time.  This is optimal 
because m|Σ| is the size of the transition table δ.  This 
gives a total of O(n + m|Σ|) time.

The next algorithm, Knuth-Morris-Pratt, achieves O(n) 
matching time with only O(m) preprocessing time.  It 
doesn't compute the transition function at all.
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The Prefix Function
The Knuth-Morris-Pratt (KMP) algorithm uses a prefix 
function π that allows a transition to be computed in O(1) 
amortized time.  One nice thing about π is that it is 

independent of the input character and only contains m 
elements.

Given a pattern P[1..m], the prefix function π for P maps 

{1..m} to {0..m-1} such that:

π[q] = max {k : k<q and Pk ⊐ Pq}

It's the length of the maximum proper prefix of P that is a 
suffix of Pq.
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The Prefix Function

• for q=3, P1 = a is the longest proper prefix of P3 = aba that is also a 
suffix.

• for q=4, P2 = ab is the longest proper prefix of P4 = abab that is 
also a suffix.

• for q=5, P3 = aba is the longest proper prefix of P5 = ababa that is 
also a suffix.

• for q = 6, P0 =  is the longest proper prefix of P6 = ababac that is 
also a suffix.
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Using The Prefix Function

a b a c b a b a b a b a c a a b a b a b b a

0 1 2 3 0 0 1 2 3 4 5 4 5 6 7 1 2 3 4 5 4 0 1

0 1
a

2
b

3
a

4
b

5
a

6
c

7
a

rule: if you fail to go forward, 
follow the back edge and do not 
consume input character.

back edges to 0 are omitted from diagram.
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KMP Matcher
KMP-MATCHER(T, P)
1. n = length(T)
2. m = length(P)
3. π = COMPUTE-PREFIX-FUNCTION(P)

4. q = 0
5. for i = 1 to n
6. while q > 0 and P[q+1]  T[i]
7. q = π [q]

8. if P[q+1] = T[i]
9. q = q + 1
10. if q = m
11. output i – m
12. q = π [q]
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KMP Matcher
KMP-MATCHER(T, P)
1. n = length(T)
2. m = length(P)
3. π = COMPUTE-PREFIX-FUNCTION(P)

4. q = 0
5. for i = 1 to n O(n) iterations
6. while q > 0 and P[q+1]  T[i] ???
7. q = π [q]

8. if P[q+1] = T[i]
9. q = q + 1
10. if q = m O(1)
11. output i – m
12. q = π [q]
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KMP Matcher
KMP-MATCHER(T, P)
1. n = length(T)
2. m = length(P)
3. π = COMPUTE-PREFIX-FUNCTION(P)

4. q = 0 // invariant: coin on every state < q
5. for i = 1 to n O(n) iterations
6. while q > 0 and P[q+1]  T[i] O(1)
7. q = π [q] // paid for by coin on π [q]

8. if P[q+1] = T[i]
9. q = q + 1 // add a coin to q first
10. if q = m O(1)
11. output i – m
12. q = π [q]
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Computing the Prefix Function
COMPUTE-PREFIX-FUNCTION(P)
1. m = length(P)
2. π[1] = 0

3. k = 0
4. for q = 2 to m
5. while k > 0 and P[k+1]  P[q]
6. k = π[k]

7. if P[k+1] = P[q]
8. k = k + 1
9. π[q] = k
10.return π

a b a b a c a

q 1 2 3 4 5 6 7

k 0 0 1 2 3 0 1

 0 0 1 2 3 0 1
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String Matching


