
© 2020 Shermer Push-Relabel 1

Bipartite Matching and
Push-Relabel

Chapter 26

© 2020 Shermer Push-Relabel 2

Lecture Overview
• Maximum Bipartite Matching

• Solved using Ford-Fulkerson

• Push-relabel Method

• Push Operation

• Relabel Operation

• Algorithm

• Correctness

• Analysis

© 2020 Shermer Push-Relabel 3

Maximum Matching
Given a graph G = (V, E), a matching in G is a subset M of E
such that no vertex is incident on more than one edge.

A maximum matching is a matching of maximum cardinality.
We are interested in the problem of finding a maximum
matching for a graph. However, we will restrict our attention
to bipartite graphs.

A vertex is matched by the matching if it
is incident on an edge, and unmatched

otherwise.

v

w

© 2020 Shermer Push-Relabel 4

Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two
sets L and R such that every edge of the graph goes between
one vertex in L and one vertex in R.

L R

The problem of finding a maximum
matching in a bipartite graph has many
applications. For instance, we may
have a set L of machines and a set R of
tasks, and an edge between l and r
means that machine l can perform task
r. In this setting, a maximum matching
is an assignment of tasks to machines
that maximizes the number of tasks
being worked on.

© 2020 Shermer Push-Relabel 5

Maximum Bipartite Matching
We shall construct maximum bipartite matchings by converting
the bipartite graph to a flow network and running Ford-
Fulkerson on it.

L R

G

t

All edges have unit
capacity

|V'| = |V| + 2
|E'| = |E| + |V|

≤ 3 |E|

s

G'

© 2020 Shermer Push-Relabel 6

Maximum Bipartite Matching
Lemma. Let G = (V, E) be a bipartite graph with partition
V = L  R and G' be the corresponding flow network. If M is a matching in
G, there is an integer-valued flow f in G' with value |f| = |M|. Conversely, if
f is an integer-valued flow in G', then there is a matching M in G with
cardinality |M| = |f|.

L R

G

s

G'

t

© 2020 Shermer Push-Relabel 7

Integrality Theorem for
Ford-Fulkerson
The lemma almost says that we can run Ford-Fulkerson
on G', get a flow, and from it derive a matching on G.
Unfortunately, the lemma talks about integer flows and
not general flows.

It turns out that we can run Ford-Fulkerson on G',
because Ford-Fulkerson actually guarantees that the
flows are integer:

Theorem. If the capacities are all integers, then the
maximum flow f produced by Ford-Fulkerson has the
property that for all vertices u and v, f(u, v) is an integer.

© 2020 Shermer Push-Relabel 8

Integrality Theorem for
Ford-Fulkerson
Proof (sketch). Prove by induction on the iterations of
Ford-Fulkerson. At each step, the residual network has
only integral capacities. Therefore, the augmenting path
flow is integral. Sums of integers are integers. ■

So to find a matching in undirected bipartite graph G:

1. form directed flow network G'

2. run Ford-Fulkerson on it

3. the matching is the edges of G with flow 1

© 2020 Shermer Push-Relabel 9

Maximum Bipartite Matching
Step 1: takes O(V + E) time.

Step 2: Any matching has O(V) edges, so the maximum
flow f* will have value O(V). Our analysis told us that
Ford-Fulkerson runs in time O(|f*|E'), which in this case
is O(VE).

Step 3: takes O(V) time (as that is the size of the
matching)

Therefore, in total, the algorithm for Maximum Bipartite
Matching takes time O(VE).

© 2020 Shermer Push-Relabel 10

Push-Relabel
Push-relabel is another method of solving network flow
problems—and not just maximum flow problems. This
method is generally faster than Ford-Fulkerson.

We examine Goldberg's maximum-flow algorithm. It
runs in O(V2E) time, which is better than Edmonds-Karp's
O(VE2) time. It can be improved to O(V3) time, as shown
in the text (section 26.5), but we will not cover that.

Push-relabel algorithms look at one vertex at a time and
its neighbors in the residual graph, rather than the whole
residual graph as in Ford-Fulkerson.

© 2020 Shermer Push-Relabel 11

Preflows and Overflowing
Push-relabel methods also do not maintain flow-
conservation throughout the algorithm. They instead
maintain a preflow f, which satisfies the capacity
constraint and

𝑒 𝑢 = ෍

𝑣 ∈𝑉

𝑓 𝑣, 𝑢 − ෍

𝑣 ∈𝑉

𝑓 𝑢, 𝑣 ≥ 0

for all vertices u in V – {s}. We call e(u) the excess flow
into vertex u.

We call a vertex u overflowing if e(u) > 0.

© 2020 Shermer Push-Relabel 12

Metaphor
Directed edges will correspond to pipes. Vertices are
pipe junctions, have two properties

1. to accommodate excess flow, each vertex has an outflow pipe
to an arbitrarily large resevoir.

2. each vertex has a height which can increase as the algorithm
progresses.

Vertex heights determine determine how flow is pushed;
we only push flow downhill. The source and sink are
fixed at heights |V| and 0, respectively. All other vertices
start at 0 and increase with time.

© 2020 Shermer Push-Relabel 13

Metaphor
The first step of the algorithm is to send as much flow as
possible downhill from the source, saturating each
outgoing edge.

s t

15/15

12/12

8/8

G

When flow first enters an
intermediate vertex, it collects
in the vertex's reservoir.
Eventually it is pushed
downhill.

|V|

0

0

0

0

© 2020 Shermer Push-Relabel 14

Metaphor
The algorithm may discover that the only pipes that leave
a vertex u and are not already saturated with flow are
not downhill from u.

If u is overflowing, then we may increase
its height by an operation called relabeling.
We increase its height to one more than
the height of the lowest neighbor to which
it has an unsaturated pipe.

After relabeling u, we can push more flow
from u.

10/10

0/4
8/8

0

3

u
5

5

6
0/13

22/22
8

© 2020 Shermer Push-Relabel 15

Metaphor
Eventually, all flow that can possibly get through to the
sink has arrived there. To make the preflow into a valid
flow, we send the excess collected in the reservoirs of
overflowing vertices back to the source by continuing to
relabel and push.

Formally, let f be a preflow in flow network G. A height
function h has h(s) = |V|, h(t) = 0, and h(u) ≤ h(v) + 1
for every residual edge (u, v) in Ef.

Lemma. If h(u) > h(v) + 1, then (u, v) is not an edge
of the residual network.

© 2020 Shermer Push-Relabel 16

The Push Operation
The operation PUSH(u, v) applies if u is an overflowing
vertex, cf(u, v) > 0, and h(u) = h(v) + 1.

PUSH(u, v)

1. change = min(u.excess, cf(u, v))
2. if (u, v)  E
3. (u, v).flow = (u, v).flow + change
4. else
5. (v, u).flow = (v, u).flow – change
6. u.excess = u.excess – change
7. v.excess = v.excess + change

© 2020 Shermer Push-Relabel 17

The Push Operation
A push is saturating if the edge (u, v) in the residual
network becomes saturated (has cf(u, v) = 0 afterwards).
If an edge becomes saturated, it disappears from the
residual network.

Observation. After a nonsaturating push from u to v,
the vertex u is no longer overflowing.

Observation. If f is a preflow before the push
operation, then f is a preflow after the push operation.

© 2020 Shermer Push-Relabel 18

The Relabel Operation
The operation RELABEL(u) applies if u is overflowing and
u.height ≤ v.height for all edges (u, v)  Ef.

RELABEL(u)

1. u.height = 1 + min{v.height : (u, v)  Ef}

Since we only call RELABEL when u is overflowing, there
is at least one edge (u, v) in the residual network, so the
min is over at least one item.

© 2020 Shermer Push-Relabel 19

Initialize-Preflow
INITIALIZE-PREFLOW(G, s)
1. for each vertex v in G.V
2. v.height = 0
3. v.excess = 0
4. for each edge (u, v) in G.E
5. (u, v).flow = 0
6. s.height = |G.V|
7. for each vertex v in s.Adj
8. (s, v).flow = c(s, v)
9. v.excess = c(s, v)
10. s.excess = s.excess – c(s, v)

© 2020 Shermer Push-Relabel 20

Generic Push-Relabel
GENERIC-PUSH-RELABEL(G)
1. INITIALIZE-PREFLOW(G, s)
2. while there is an applicable push or relabel operation
3. select such an operation and perform it

Lemma. An overflowing vertex can be either pushed or
relabeled.

Corollary. When the algorithm terminates, the preflow f
is a flow.

© 2020 Shermer Push-Relabel 21

No s-t Path Lemma
During the operation of Generic Push-Relabel, the vertex
heights never decrease. Also, the heights maintain the formal
properties of a height function.

Lemma. Let G = (V, E) be a flow network with source s and
sink t, let f be a preflow in G, and h be a height function on V.
Then there is no path from the source s to the sink t in the
residual network Gf.

Proof. Assume there is a simple path p = <v0, v1, ... , vk>
where v0 = s and vk = t. k < |V|. For i = 0...k-1, edge (vi,
vi+1) is in Ef. Because h is a height function, h(vi) ≤ h(vi+1) + 1
for i = 0...k-1. Combining all of these inequalities yields h(s) ≤
h(t) + k, a contradiction.

© 2020 Shermer Push-Relabel 22

Push-Relabel Correctness
Theorem. If GENERIC-PUSH-RELABEL terminates when run
on a flow network G, then the preflow it computes is a
maximum flow for G.

Proof. We prove the following invariant:
At each iteration of the while loop of GENERIC-PUSH-
RELABEL, f is a preflow.

INITIALIZATION: INITIALIZE-PREFLOW makes f a preflow.
MAINTENANCE: The only operations performed are PUSH
and RELABEL. RELABEL does not affect f. A previous
observation is that a PUSH changes a preflow into another
preflow.

© 2020 Shermer Push-Relabel 23

Push-Relabel Correctness
TERMINATION: The preflow f must be a flow as all excesses
are 0. The heights are a height function, so there is no path
from s to t in the residual network Gf. By the Max-flow Min-cut
Theorem, then, f is a maximum flow. ■

The analysis of GENERIC-PUSH-RELABEL is involved. Please
read it. The major idea is to bound the number of operations:
relabels, saturating pushes, and nonsaturating pushes. First
we bound the heights:

Lemma. For all vertices u in V, u.height never exceeds 2|V|-1.
Corollary. The number of relabel operations is less than
2|V|2.

© 2020 Shermer Push-Relabel 24

Push-Relabel Analysis
Lemma. The number of saturating pushes is less than
2|V||E|.

Proof (sketch). Count the saturating pushes on (u, v) and (v,
u) together. As pushes are downhill, max(u.height, v.height)
gets one bigger each saturating push. Therefore, at most 2|V|

saturating pushes on (u, v) and (v, u). ■

Lemma. The number of nonsaturating pushes is less than
4|V|2(|V| + |E|).

Proof. By potential method. In text. ■

© 2020 Shermer Push-Relabel 25

Push-Relabel Analysis
Theorem. The number of basic operations in GENERIC-PUSH-
RELABEL on any flow network G=(V, E) is O(V2E).

Corollary. There is an implementation of the generic push-
relabel algorithm that runs in O(V2E) time.

