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Bipartite Matching and
Push-Relabel

Chapter 26
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Lecture Overview
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• Solved using Ford-Fulkerson

• Push-relabel Method

• Push Operation

• Relabel Operation

• Algorithm

• Correctness

• Analysis



© 2020 Shermer Push-Relabel 3

Maximum Matching
Given a graph G = (V, E), a matching in G is a subset M of E 
such that no vertex is incident on more than one edge.

A maximum matching is a matching of maximum cardinality.  
We are interested in the problem of finding a maximum 
matching for a graph.  However, we will restrict our attention 
to bipartite graphs.

A vertex is matched by the matching if it 
is incident on an edge, and unmatched

otherwise.

v

w



© 2020 Shermer Push-Relabel 4

Bipartite Graphs
A graph is bipartite if its vertices can be partitioned into two 
sets L and R such that every edge of the graph goes between 
one vertex in L and one vertex in R.

L R

The problem of finding a maximum 
matching in a bipartite graph has many 
applications.   For instance, we may 
have a set L of machines and a set R of 
tasks, and an edge between l and r 
means that machine l can perform task 
r.  In this setting, a maximum matching 
is an assignment of tasks to machines 
that maximizes the number of tasks 
being worked on.
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Maximum Bipartite Matching
We shall construct maximum bipartite matchings by converting 
the bipartite graph to a flow network and running Ford-
Fulkerson on it.
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All edges have unit 
capacity

|V'| = |V| + 2
|E'| = |E| + |V| 

≤ 3 |E|
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Maximum Bipartite Matching
Lemma.  Let G = (V, E) be a bipartite graph with partition
V = L  R and G' be the corresponding flow network.  If M is a matching in 
G, there is an integer-valued flow f in G' with value |f| = |M|.  Conversely, if 
f is an integer-valued flow in G', then there is a matching M in G with 
cardinality |M| = |f|.
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Integrality Theorem for 
Ford-Fulkerson
The lemma almost says that we can run Ford-Fulkerson 
on G', get a flow, and from it derive a matching on G.  
Unfortunately, the lemma talks about integer flows and 
not general flows.

It turns out that we can run Ford-Fulkerson on G', 
because Ford-Fulkerson actually guarantees that the 
flows are integer:

Theorem. If the capacities are all integers, then the 
maximum flow f produced by Ford-Fulkerson has the 
property that for all vertices u and v, f(u, v) is an integer.
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Integrality Theorem for 
Ford-Fulkerson
Proof (sketch).  Prove by induction on the iterations of 
Ford-Fulkerson.  At each step, the residual network has 
only integral capacities.  Therefore, the augmenting path 
flow is integral.  Sums of integers are integers. ■

So to find a matching in undirected bipartite graph G:

1. form directed flow network G'

2. run Ford-Fulkerson on it

3. the matching is the edges of G with flow 1



© 2020 Shermer Push-Relabel 9

Maximum Bipartite Matching
Step 1: takes O(V + E) time.

Step 2: Any matching has O(V) edges, so the maximum 
flow f* will have value O(V).  Our analysis told us that 
Ford-Fulkerson runs in time O(|f*|E'), which in this case 
is O(VE).

Step 3: takes O(V) time (as that is the size of the 
matching)

Therefore, in total, the algorithm for Maximum Bipartite 
Matching takes time O(VE).
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Push-Relabel
Push-relabel is another method of solving network flow 
problems—and not just maximum flow problems.  This 
method is generally faster than Ford-Fulkerson.

We examine Goldberg's maximum-flow algorithm.   It 
runs in O(V2E) time, which is better than Edmonds-Karp's 
O(VE2) time.  It can be improved to O(V3) time, as shown 
in the text (section 26.5), but we will not cover that.

Push-relabel algorithms look at one vertex at a time and 
its neighbors in the residual graph, rather than the whole 
residual graph as in Ford-Fulkerson. 
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Preflows and Overflowing
Push-relabel methods also do not maintain flow-
conservation throughout the algorithm.  They instead 
maintain a preflow f, which satisfies the capacity 
constraint and

𝑒 𝑢 = ෍

𝑣 ∈𝑉

𝑓 𝑣, 𝑢 − ෍

𝑣 ∈𝑉

𝑓 𝑢, 𝑣 ≥ 0

for all vertices u in V – {s}.  We call e(u) the excess flow 
into vertex u.

We call a vertex u overflowing if e(u) > 0.
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Metaphor
Directed edges will correspond to pipes.  Vertices are 
pipe junctions, have two properties

1. to accommodate excess flow, each vertex has an outflow pipe 
to an arbitrarily large resevoir.

2. each vertex has a height which can increase as the algorithm 
progresses.

Vertex heights determine determine how flow is pushed; 
we only push flow downhill.  The source and sink are 
fixed at heights |V| and 0, respectively.  All other vertices 
start at 0 and increase with time.
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Metaphor
The first step of the algorithm is to send as much flow as 
possible downhill from the source, saturating each 
outgoing edge.
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When flow first enters an 
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in the vertex's reservoir.  
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Metaphor
The algorithm may discover that the only pipes that leave 
a vertex u and are not already saturated with flow are 
not downhill from u.

If u is overflowing, then we may increase
its height by an operation called relabeling.  
We increase its height to one more than 
the height of the lowest neighbor to which 
it has an unsaturated pipe.

After relabeling u, we can push more flow 
from u.
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Metaphor
Eventually, all flow that can possibly get through to the 
sink has arrived there.  To make the preflow into a valid 
flow, we send the excess collected in the reservoirs of 
overflowing vertices back to the source by continuing to 
relabel and push.

Formally, let f be a preflow in flow network G.  A height 
function h has h(s) = |V|, h(t) = 0, and h(u) ≤ h(v) + 1 
for every residual edge (u, v) in Ef.

Lemma.  If h(u) > h(v) + 1, then (u, v) is not an edge 
of the residual network.
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The Push Operation
The operation PUSH(u, v) applies if u is an overflowing 
vertex, cf(u, v) > 0, and h(u) = h(v) + 1.

PUSH(u, v)

1. change = min(u.excess, cf(u, v))
2. if (u, v)  E
3. (u, v).flow = (u, v).flow + change
4. else
5. (v, u).flow = (v, u).flow – change
6. u.excess = u.excess – change
7. v.excess = v.excess + change
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The Push Operation
A push is saturating if the edge (u, v) in the residual 
network becomes saturated (has cf(u, v) = 0 afterwards).  
If an edge becomes saturated, it disappears from the 
residual network.

Observation. After a nonsaturating push from u to v, 
the vertex u is no longer overflowing.

Observation.  If f is a preflow before the push 
operation, then f is a preflow after the push operation.
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The Relabel Operation
The operation RELABEL(u) applies if u is overflowing and 
u.height ≤ v.height for all edges (u, v)  Ef.

RELABEL(u)

1. u.height = 1 + min{v.height : (u, v)  Ef}

Since we only call RELABEL when u is overflowing, there 
is at least one edge (u, v) in the residual network, so the 
min is over at least one item.
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Initialize-Preflow
INITIALIZE-PREFLOW(G, s)
1. for each vertex v in G.V
2. v.height = 0
3. v.excess = 0
4. for each edge (u, v) in G.E
5. (u, v).flow = 0
6. s.height = |G.V|
7. for each vertex v in s.Adj
8. (s, v).flow = c(s, v)
9. v.excess = c(s, v)
10. s.excess = s.excess – c(s, v)
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Generic Push-Relabel
GENERIC-PUSH-RELABEL(G)
1. INITIALIZE-PREFLOW(G, s)
2. while there is an applicable push or relabel operation
3. select such an operation and perform it

Lemma. An overflowing vertex can be either pushed or 
relabeled.

Corollary. When the algorithm terminates, the preflow f 
is a flow.    
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No s-t Path Lemma
During the operation of Generic Push-Relabel, the vertex 
heights never decrease.  Also, the heights maintain the formal 
properties of a height function.

Lemma. Let G = (V, E) be a flow network with source s and 
sink t, let f be a preflow in G, and h be a height function on V.  
Then there is no path from the source s to the sink t in the 
residual network Gf.

Proof. Assume there is a simple path p = <v0, v1, ... , vk> 
where v0 = s and vk = t.  k < |V|.  For i = 0...k-1, edge (vi, 
vi+1) is in Ef.  Because h is a height function, h(vi) ≤ h(vi+1) + 1 
for i = 0...k-1.  Combining all of these inequalities yields h(s) ≤ 
h(t) + k, a contradiction. 
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Push-Relabel Correctness
Theorem.  If GENERIC-PUSH-RELABEL terminates when run 
on a flow network G, then the preflow it computes is a 
maximum flow for G.

Proof. We prove the following invariant:
At each iteration of the while loop of GENERIC-PUSH-
RELABEL, f is a preflow.

INITIALIZATION: INITIALIZE-PREFLOW makes f a preflow.
MAINTENANCE: The only operations performed are PUSH 
and RELABEL.  RELABEL does not affect f.  A previous 
observation is that a PUSH changes a preflow into another 
preflow. 
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Push-Relabel Correctness
TERMINATION:  The preflow f must be a flow as all excesses 
are 0.  The heights are a height function, so there is no path 
from s to t in the residual network Gf.  By the Max-flow Min-cut 
Theorem, then, f is a maximum flow. ■

The analysis of GENERIC-PUSH-RELABEL is involved.  Please 
read it.   The major idea is to bound the number of operations:
relabels, saturating pushes, and nonsaturating pushes.  First
we bound the heights:

Lemma.  For all vertices u in V, u.height never exceeds 2|V|-1.
Corollary.  The number of relabel operations is less than 
2|V|2.
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Push-Relabel Analysis
Lemma.  The number of saturating pushes is less than 
2|V||E|.

Proof (sketch).  Count the saturating pushes on (u, v) and (v, 
u) together.  As pushes are downhill, max(u.height, v.height) 
gets one bigger each saturating push.  Therefore, at most 2|V| 

saturating pushes on (u, v) and (v, u). ■

Lemma. The number of nonsaturating pushes is less than 
4|V|2(|V| + |E|).

Proof.  By potential method.  In text. ■
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Push-Relabel Analysis
Theorem. The number of basic operations in GENERIC-PUSH-
RELABEL on any flow network G=(V, E) is O(V2E).

Corollary.  There is an implementation of the generic push-
relabel algorithm that runs in O(V2E) time.


