
© 2020 Shermer Ford-Fulkerson 1

The Ford-Fulkerson Method

Chapter 26

© 2020 Shermer Ford-Fulkerson 2

Lecture Overview
• Ford-Fulkerson Overview

• Residual Networks

• Augmenting Paths

• Cuts in Flow Networks

• Ford-Fulkerson detail

• Edmonds-Karp Algorithm

© 2020 Shermer Ford-Fulkerson 3

The Ford-Fulkerson Method
It's more than an algorithm. It's a general scheme with
several different implementations.

The Ford-Fulkerson method iteratively increases the value of a
flow in a flow network, starting with the everywhere-zero flow.
At each iteration, we have a flow and a residual network. We
then find an augmenting path and increase the flow along it.
Then we repeat.

FORD-FULKERSON-METHOD(G, s, t)

1. initialize flow f to 0

2. while there is an augmenting path p in residual network Gf

3. augment flow f along p

4. return f

© 2020 Shermer Ford-Fulkerson 4

Residual Networks
Given a flow network G with a flow f on it, the residual
network Gf consists of edges with capacities that represent
how we can change the flow on edges of G and still respect
the original capacities. An edge of the flow network can
admit an amount of additional flow equal to the edge's
capacity minus the flow on that edge.

If flow on an edge is positive, we place that edge into Gf with a
residual capacity of cf(u, v) = c(u, v) – f(u, v). 0-capacity
edges are not included in Gf.

In order to represent a possible decrease of a positive flow
along edge (u, v) in G, we place an edge (v, u) into Gf with
residual capacity cf(v, u) = f(u, v).

© 2020 Shermer Ford-Fulkerson 5

Residual Networks
To summarize,

𝑐𝑓 𝑢, 𝑣 = ቐ
𝑐 𝑢, 𝑣 − 𝑓(𝑢, 𝑣) if 𝑢, 𝑣 ∈ 𝐸

𝑓(𝑣, 𝑢) if 𝑣, 𝑢 ∈ 𝐸
0 otherwise

And the residual network of G induced by f is Gf = (V, Ef)
where Ef ={(u, v): cf(u, v) > 0}.

s t

15/25 10/30

5/5

5/5

0/8G

s t
10 20

5

5

8Gf

1015

© 2020 Shermer Ford-Fulkerson 6

Flows in Residual Networks
A flow in a residual network is a roadmap for adding flow to
the original flow network. If f is a flow in G and f' is a flow in
Gf, we define f ↑ f', the augmentation of flow f by f', to be

defined by

𝑓↑𝑓′ u, v = ቊ
𝑓 𝑢, 𝑣 + 𝑓′ 𝑢, 𝑣 − 𝑓′(𝑣, 𝑢) if 𝑢, 𝑣 ∈ 𝐸
0 otherwise

In other words, we increase the flow on (u, v) by f'(u, v), but
also decrease it by f'(v, u), because pushing flow on the
reverse edge in the residual network signifies decreasing or
cancelling the flow in the original network.

© 2020 Shermer Ford-Fulkerson 7

Flows in Residual Networks
Lemma. If f is a flow in G = (V, E) and f' is a flow in Gf, then
f ↑ f' is a flow in G with value |f ↑ f'| = |f| + |f'|.

Proof. We first verify that f ↑ f' obeys the capacity constraints

and flow conservation.

If (u, v) is in E, then cf(v, u) = f(u, v). Therefore, we have
f'(v, u) ≤ cf(v, u) = f(u, v) and

(f ↑ f')(u, v) = f(u, v) + f'(u, v) – f'(v, u) by definition

≥ f(u, v) + f'(u, v) – f(u, v)
= f'(u, v)
≥ 0.

© 2020 Shermer Ford-Fulkerson 8

Flows in Residual Networks
also,

(f ↑ f')(u, v) = f(u, v) + f'(u, v) – f'(v, u) by definition

≤ f(u, v) + f'(u, v)
≤ f(u, v) + cf(u, v) (capacity constraint)
= f(u, v) + c(u, v) – f(u, v) (defn. of cf)
= c(u, v).

So the f ↑ f' meets the capacity constraints.

For flow conservation of f ↑ f', we appeal to the flow

conservation of f and the flow conservation of f'. A formal proof

is in the text. ■

© 2020 Shermer Ford-Fulkerson 9

Augmenting Paths
Given a flow network G = (V, E) and a flow f, an augmenting
path is a simple path from s to t in the residual network Gf. We
may increase the flow on an edge (u, v) of an augmenting path
by up to cf(u, v) without violating the capacity constraint on
whichever of (u, v) and (v, u) is in the original graph.

© 2020 Shermer Ford-Fulkerson 10

Augmenting Paths
Let p be an augmenting path, and define the capacity of p to be
the minimum capacity of the edges in p:

cf(p) = min {cf(u, v) : (u, v) is on p}.

We can then define a flow fp along p in residual graph Gf:

𝑓𝑝 𝑢, 𝑣 = ቊ
𝑐𝑓(𝑝) if 𝑢, 𝑣 is on 𝑝

0 otherwise

Lemma. fp is a flow in Gf with value |fp| = cf(p) > 0.

Corollary. f ↑ fp is a flow in G with value |f ↑ fp| = |f| + |fp| > |f|

© 2020 Shermer

To be certain that our algorithm terminates correctly, we need to
show that Ford-Fulkerson finds a maximum flow. To prove this,
we will need to explore cuts in flow networks.

A cut (S, T) of a flow network G = (V, E) is a partition of V into S
and T=V – S such that s  S and t  T.

Ford-Fulkerson 11

Cuts in Flow Networks

s t

S

T

If f is a flow, the net flow f(S, T)
across the cut (S, T) is:

𝑓 𝑆, 𝑇 = ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑓 𝑢, 𝑣 − ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑓 𝑣, 𝑢

© 2020 Shermer

The capacity of the cut (S, T) is

𝑐 𝑆, 𝑇 = ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑐 𝑢, 𝑣

A minimum cut of a flow network is a cut whose capacity is
minimum over all cuts of the network.

Ford-Fulkerson 12

Cuts in Flow Networks

f(S, T) = 12 + 11 – 4 = 19

c(S, T) = 12 + 14 = 26

© 2020 Shermer

Lemma. Let f be a flow in a network G with source s and sink
t, and let (S, T) be any cut of G. Then the net flow across
(S, T) is f(S, T) = |f|.

Proof. In the text. Basically it follows from flow-conservation.
■

Corollary. The value of any flow f in a flow network G is bounded
from above by the capacity of any cut of G.

Proof. Let (S, T) be any cut and f be any flow.

|f| = f(S, T) = ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑓 𝑢, 𝑣 − ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑓 𝑣, 𝑢

≤ ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑓 𝑢, 𝑣 ≤ ෍

𝑢 ∈𝑆

෍

𝑣 ∈𝑇

𝑐 𝑢, 𝑣 = 𝑐(𝑆, 𝑇)

Ford-Fulkerson 13

Cuts in Flow Networks

© 2020 Shermer

Theorem. Let f be a flow in a network G = (V, E) with source s
and sink t. The following conditions are equivalent.

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. |f| = c(S, T) for some cut (S, T) of G.

Proof. (1) ⇒ (2) Suppose f is a maximum flow in G but Gf

contains an augmenting path p. Then f ↑ fp is a flow in G with

value greater than |f|, a contradiction.

(2) ⇒ (3) Suppose Gf contains no augmenting path (path from s

to t). Let S = {v | there is a path from s to v in Gf} and
T = V – S.

Ford-Fulkerson 14

Max-flow min-cut theorem

© 2020 Shermer

Consider (u, v) where u  S and v  T. If (u, v)  E, we must
have f(u, v) = c(u, v). If (v, u)  E, we must have f(v, u) = 0.

Thus f(S, T) = c(S, T). But |f| = f(S, T).

(3) ⇒ (1) |f| ≤ c(S, T) for all cuts (S, T). |f| = c(S, T) implies

|f| is a maximum flow. ■

Ford-Fulkerson 15

Max-flow min-cut theorem

© 2020 Shermer

FORD-FULKERSON(G, s, t)

1. for each edge e in G.edges

2. e.flow = 0

3. while there is a path p from s to t in residual network Gf

4. cf(p) = min {cf(u, v) : (u, v) is in p}

5. for each edge (u, v) in p

6. if (u, v) is in G.edges

7. (u, v).flow = (u, v).flow + cf(p)

8. else

9. (v, u).flow = (v, u).flow – cf(p)

Ford-Fulkerson 16

Ford-Fulkerson

© 2020 Shermer

The running time of FORD-FULKERSON depends on the way
the augmenting path p is chosen.

If p is not chosen well, FORD-FULKERSON may not even
terminate (for the case when irrational capacities are allowed).

If capacities are restricted to be rational, then we can convert
the problem to an integer capacity one by multiplying all
capacities by their common denominator. But integer
capacities are by far the most common form of the problem in
practice.

For integer capacities, FORD-FULKERSON runs in time O(E
|f*|), where f* is the maximum flow.

Ford-Fulkerson 17

Ford-Fulkerson Analysis

© 2020 Shermer

For integer capacities, FORD-FULKERSON runs in time
O(E |f*|), where f* is the maximum flow.

The loop of lines 1 – 2 takes time O(E).

The loop body of lines 4 – 9 takes time
O(size of p)  O(V)  O(E).

Finding a path in line 3 takes time O(E) (by BFS or DFS, e.g.).

The number of iterations of the loop in lines 3 – 9 is at most
|f*|, as each iteration increases the flow by an integer amount.

Therefore lines 3 – 9 take a total of O(E |f*|) time.

Ford-Fulkerson 18

Ford-Fulkerson Analysis

output-sensitive

© 2020 Shermer

FORD-FULKERSON is good when capacities are integers and
the optimal flow value |f*| is small. But it can be bad when
|f*| is large.

This flow network could take 2 million path augmentations if
we choose the augmenting paths poorly:

Ford-Fulkerson 19

Ford-Fulkerson Analysis

© 2020 Shermer

We can avoid this poor behaviour by always choosing p as a
shortest path from s to t in the residual network; we can do
this by breadth-first search. The Ford-Fulkerson method with
this method of choosing p is known as the Edmonds-Karp
algorithm. Edmonds-Karp runs in O(VE2) time.

The analysis depends on distances to vertices in the residual
network Gf. We use δf(u, v) for the shortest-path distance from
u to v in Gf where each edge has unit distance.

Lemma. If Edmonds-Karp is run on G, then for all vertices v in
V – {s, t}, the shortest-path distance δf(s, v) increases
monotonically with each flow augmentation.

Ford-Fulkerson 20

Edmonds-Karp

© 2020 Shermer

Proof (sketch). By contradiction. Suppose there is an
augmentation that causes δf(s, v) to decrease. Let f be the
flow just before the first such augmentation, and f' be the flow
just afterward. Let v be the vertex with minimum δf'(s, v)
whose distance was decreased; δf'(s, v) < δf(s, v). Let p be a
shortest path from s to v in Gf' and u the predecessor of v on
this path. (u, v) is in Ef' and δf'(s, u) = δf'(s, v) – 1.

The distance of u from s did not decrease: δf'(s, u) ≥ δf(s, u).

Now, (u, v) is not in Ef. But it is in Ef'. So it must be that the
augmentation increased the flow from v to u. This means
there was a shortest path from s to u in Gf ending with (v, u).
Thus δf(s, v) = δf(s, u) – 1 ≤ δf'(s, u) – 1 = δf'(s, v) – 2. ■

Ford-Fulkerson 21

Edmonds-Karp

© 2020 Shermer

Theorem. If Edmonds-Karp is run on G = (V, E), the total
number of flow augmentations it performs is O(VE).

Proof. Call an edge (u, v) on p critical if cf(p) = cf(u, v). After
we have augmented with augmenting path p, any critical edge
on p disappears from the network. At least one edge on any p
is critical. We show that each of the edges can become critical
at most O(V) times.

Let (u, v) be in E. When (u, v) is critical, we have δf(s, v) =
δf(s, u) + 1. Once the flow is augmented, (u, v) disappears
from the residual network. It cannot reappear until after (v, u)
appears on an augmenting path. If f' is the flow when this
happens, then

Ford-Fulkerson 22

Edmonds-Karp

© 2020 Shermer

δf'(s, u) = δf'(s, v) + 1 ≥ δf(s, v) + 1 = δf(s, u) + 2.

I.e. from one time (u, v) goes critical to the next time it can go
critical, u's distance from s has increased by 2. Since distances
can be at most |V| – 1, and at the start the distance from s to
u is at least 0, any one edge can go critical at most O(V) times.

Since there are O(E) edges, and each can go critical O(V)
times, there can be no more augmentations after O(EV) of
them, as each augmentation has at least one critical edge. ■

Ford-Fulkerson 23

Edmonds-Karp

© 2020 Shermer

The analysis of Edmonds-Karp is now straightforward.

As we stated when talking about FORD-FULKERSON, the loop
in lines 1-2 is O(E). The loop in lines 3-9 is O(E) per iteration.
The theorem establishes that there are at most O(VE)
iterations. Therefore the total time is O(E) + O(VE2) = O(VE2).

Ford-Fulkerson 24

Edmonds-Karp Analysis

