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Johnson's APSP Algorithm
Network Flows

Chapters 25, 26
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Lecture Overview
• Johnson's All-Pairs Shortest Paths Algorithm

• Maximum Flow Problem (Introduction)
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Johnson's Algorithm
Johnson's algorithm solves the All-Pairs Shortest Paths (APSP) 
in O(V2 log V + VE) time.  This is better than our other 
solutions in the case where G is sparse.   Johnson's algorithm 
uses both Dijkstra's algorithm and the Bellman-Ford algorithm 
as subroutines.

A principal idea in Johnson's algorithm is reweighting.  If G 
has negative-weight edges but no negative-weight cycles, we 
compute a new set of nonnegative edge weights.

Once we have all nonnegative edge weights, we can run 
Dijkstra's algorithm once from each vertex.   Using Fibonacci 
heaps for the min-priority queue, we get the desired running 
time of O(V2 log V + VE).
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Reweighting
When we reweight G, the new edge weights w* must 
satisfy two properties:

1. For all pairs of vertices u, v  V, a path p is a 
shortest path from u to v using original weight 
function w if and only if p is also a shortest path from 
u to v using weight function w*.

2. For all edges (u, v), the new weight w*(u, v) is 
nonnegative.
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Preserving Shortest Paths
Let δ denote shortest-path lengths derived from the weight function 
w, and δ* denote shortest-path lengths derived from the weight 
function w*

Lemma. Given G=(V, E) with weights w, let h: V → R be any 
function mapping vertices to real numbers.  Define

w*(u, v) = w(u, v) + h(u) – h(v).

Let p be any path from v0 to vk.  Then p is a shortest path with 
weight function w if and only if it is a shortest path with weight 
function w*.  I.e. w(p) = δ(v0, vk) iff w*(p) = δ*(v0, vk).

Furthermore, G has a negative-weight cycle using weights w iff G 

has a negative-weight cycle using weights w*.
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Preserving Shortest Paths
Proof.   Let p = <v0, v1, ... , vk>.  Then

𝒘∗ 𝒑 = 

𝒊=𝟏

𝒌

𝒘∗ 𝒗𝒊−𝟏, 𝒗𝒊

= 

𝒊=𝟏

𝒌

(𝒘 𝒗𝒊−𝟏, 𝒗𝒊 + 𝒉 𝒗𝒊−𝟏 − 𝒉(𝒗𝒊))

= 

𝒊=𝟏

𝒌

𝒘 𝒗𝒊−𝟏, 𝒗𝒊 + 𝒉 𝒗𝟎 − 𝒉 𝒗𝒌

= 𝒘 𝒑 + 𝒉 𝒗𝟎 − 𝒉 𝒗𝒌

Therefore, any path p from v0 to vk has w*(p) = w(p) + h(v0) –
h(vk).   If one such path is shorter than another using weights w, it 
is shorter using weights w*. 
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Preserving Shortest Paths
Thus, w(p) = δ(v0, vk) if and only if w*(p) = δ*(v0, vk).

Next consider the case when p is a cycle; i.e. v0 = vk.  Then 

w*(p) = w(p) + h(v0) – h(vk)

= w(p) + h(v0) – h(v0)

= w(p).

So each cycle is the same weight under w* as it is under w.  Thus, 
w* has a negative-weight cycle iff w does. ■
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Producing Nonnegative 
Weights
In order to produce nonnegative weights, Johnson's algorithm uses 
a clever trick of adding a vertex s to the graph with 0-weight edges 
from s to every other vertex in V.

So V' = V + s.  Note that no new paths between vertices of V is 
created by the addition of s and its edges.  In particular, shortest
paths are unchanged.   Also note that G has a negative-weight cycle 
iff G' has a negative-weight cycle. 

G G'

0
0

0

0
0

s
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Producing Nonnegative 
Weights
So suppose there are no negative-weight cycles in G or G', 
and define h(v) = δ(s, v) for all vertices v in V'.  Note that 
this gives h(v) = 0 unless there is a negative-weight path 
from some u to v.

By the triangle inequality, we have that δ(s, v) ≤ δ(s, u) + 
w(u, v) for all edges (u, v) in E'.  We can rewrite this as 
h(v) ≤ h(u) + w(u, v), or w(u, v) + h(u) – h(v) ≥ 0.  But 
the right-hand side of this inequality is precisely the 
definition of w*(u, v), so we get w*(u, v) ≥ 0 for every 
edge (u, v) in E'.
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Producing Nonnegative 
Weights
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Johnson's Algorithm
1. Augment G with s and its edges, giving G'.

2. If BELLMAN-FORD(G', s) is FALSE

3. return NIL;  // G has a negative-weight cycle.

4. else

5. for each vertex v in V'

6. h(v) := δ(s, v) (from BELLMAN-FORD)

7. for each edge (u, v) in E'

8. w*(u, v) = w(u, v) + h(u) – h(v)

9. for each vertex u in V

10. run DIJKSTRA(G, w*, u) to compute δ*(u, v) for all v in V

11. for each vertex v in V

12. duv = δ*(u, v) + h(v) – h(u)

13. return D
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Flow Networks

We can use weights in digraphs to model situations other than 
distances or costs.   In this section (Chapter 26) we will use weights 
to model the capacities of edges to transfer material.

We can think of perhaps water flowing in pipes, with the edges 
representing pipes, and the capacities related to the diameter of the 
pipes and the pressures the pipes can take.   Or we can model parts 
moving through assembly lines, current through electrical networks, 
or information flowing through communication networks.

We will designate two nodes of our digraph as the source (s) and the 
sink (t) of the flow.  The source will have flow going out of it (only) 
and the sink will have flow going into it (only). At any node other 
than the source and the sink, the amount of material flowing into the 
node must equal the amount flowing out; material is not allowed to 
accumulate in nodes.  This is called the conservation of flow.
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Flow Networks

In the Maximum-Flow Problem, we wish to compute the greatest rate 
at which material can be shipped from the source to the sink without 
violating any capacity constraints.

We will see two methods of solving the maximum-flow problem.  The 
first is known as the Ford-Fulkerson method of augmenting paths.  
The second is the push-relabel method.

We start with some formal definitions and properties of flow 
networks.
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Flow networks and flows
A flow network is a weighted, directed graph G with distinguished 
vertices s and t.  We let c (for capacity) represent the weight 
function.

For convenience, we will assume that for every vertex v, there is a 
path from s to v, and a path from v to t.  Otherwise the vertex is 
unusable in a flow from s to t.

A flow in G is a function f: V  V → R that satisfies:

• capacity constraint:  f(u, v) ≤ c(u, v)  for all u, v in V.

• flow conservation:  σ𝑣 ∈𝑉 𝑓 𝑣, 𝑢 = σ𝑣 ∈𝑉 𝑓 𝑢, 𝑣
for all u in V – {s, t}.
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Flow networks and flows
The flow f(u, v) from vertex u to vertex v can be zero or 
positive.   The value of a flow f is:

|f| = 

𝑣 ∈𝑉

𝑓(𝑠, 𝑣)

that is, the total flow coming out of the source.  We wish 
to find a flow of maximum value. 

The flow conservation property says that the total flow 
into a vertex other than s or t is equal to the total flow 
out of the vertex.

When neither (u, v) nor (v, u) is in E, there can be no 
flow between u and v and so f(u, v) = f(v, u) = 0.
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An example

(a) The Lucky Puck Company's transport network.  Capacities are in 
crates/day.

(b) A flow of value 19 in the network.   This is not a maximum flow.  
A flow value of 23 is achievable.
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Antiparallel edges
Two edges are said to be antiparallel if one edge is (u, v) and the 
other is (v, u).   It will be convenient to assume that there are no 
antiparallel edges in a network.

It is easy to transform a network with antiparallel edges to one with 
no antiparallel edges.   Suppose (u, v) and (v, u) are antiparallel 
edges.   Choose one of them, say (u, v), and split it by adding a 
new vertex v' and replacing edge (u, v) with the pair of edges (u, v') 
and (v', v).   We also set the capacity of both of the new edges to 
the capacity of the original edge.  Do this for each pair of 
antiparallel edges.
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Multiple Sources and Sinks
A maximum-flow problem may have several sources (s1, s2, etc.) 
and sinks (t1, t2, etc.), rather than just one of each.   We can reduce 
this problem to an ordinary single-source, single-sink problem.   We 
simply add a supersource s and supersink t.   The supersource has 
edges (s, si) to each source si with capacity ∞, and the supersink has 
edges (ti, t) from each sink ti with capacity ∞.


