
© 2020 Shermer Johnson's and Flows 1

Johnson's APSP Algorithm
Network Flows

Chapters 25, 26

© 2020 Shermer Johnson's and Flows 2

Lecture Overview
• Johnson's All-Pairs Shortest Paths Algorithm

• Maximum Flow Problem (Introduction)

© 2020 Shermer Johnson's and Flows 3

Johnson's Algorithm
Johnson's algorithm solves the All-Pairs Shortest Paths (APSP)
in O(V2 log V + VE) time. This is better than our other
solutions in the case where G is sparse. Johnson's algorithm
uses both Dijkstra's algorithm and the Bellman-Ford algorithm
as subroutines.

A principal idea in Johnson's algorithm is reweighting. If G
has negative-weight edges but no negative-weight cycles, we
compute a new set of nonnegative edge weights.

Once we have all nonnegative edge weights, we can run
Dijkstra's algorithm once from each vertex. Using Fibonacci
heaps for the min-priority queue, we get the desired running
time of O(V2 log V + VE).

© 2020 Shermer Johnson's and Flows 4

Reweighting
When we reweight G, the new edge weights w* must
satisfy two properties:

1. For all pairs of vertices u, v V, a path p is a
shortest path from u to v using original weight
function w if and only if p is also a shortest path from
u to v using weight function w*.

2. For all edges (u, v), the new weight w*(u, v) is
nonnegative.

© 2020 Shermer Johnson's and Flows 5

Preserving Shortest Paths
Let δ denote shortest-path lengths derived from the weight function
w, and δ* denote shortest-path lengths derived from the weight
function w*

Lemma. Given G=(V, E) with weights w, let h: V → R be any
function mapping vertices to real numbers. Define

w*(u, v) = w(u, v) + h(u) – h(v).

Let p be any path from v0 to vk. Then p is a shortest path with
weight function w if and only if it is a shortest path with weight
function w*. I.e. w(p) = δ(v0, vk) iff w*(p) = δ*(v0, vk).

Furthermore, G has a negative-weight cycle using weights w iff G

has a negative-weight cycle using weights w*.

© 2020 Shermer Johnson's and Flows 6

Preserving Shortest Paths
Proof. Let p = <v0, v1, ... , vk>. Then

𝒘∗ 𝒑 =

𝒊=𝟏

𝒌

𝒘∗ 𝒗𝒊−𝟏, 𝒗𝒊

=

𝒊=𝟏

𝒌

(𝒘 𝒗𝒊−𝟏, 𝒗𝒊 + 𝒉 𝒗𝒊−𝟏 − 𝒉(𝒗𝒊))

=

𝒊=𝟏

𝒌

𝒘 𝒗𝒊−𝟏, 𝒗𝒊 + 𝒉 𝒗𝟎 − 𝒉 𝒗𝒌

= 𝒘 𝒑 + 𝒉 𝒗𝟎 − 𝒉 𝒗𝒌

Therefore, any path p from v0 to vk has w*(p) = w(p) + h(v0) –
h(vk). If one such path is shorter than another using weights w, it
is shorter using weights w*.

© 2020 Shermer Johnson's and Flows 7

Preserving Shortest Paths
Thus, w(p) = δ(v0, vk) if and only if w*(p) = δ*(v0, vk).

Next consider the case when p is a cycle; i.e. v0 = vk. Then

w*(p) = w(p) + h(v0) – h(vk)

= w(p) + h(v0) – h(v0)

= w(p).

So each cycle is the same weight under w* as it is under w. Thus,
w* has a negative-weight cycle iff w does. ■

© 2020 Shermer Johnson's and Flows 8

Producing Nonnegative
Weights
In order to produce nonnegative weights, Johnson's algorithm uses
a clever trick of adding a vertex s to the graph with 0-weight edges
from s to every other vertex in V.

So V' = V + s. Note that no new paths between vertices of V is
created by the addition of s and its edges. In particular, shortest
paths are unchanged. Also note that G has a negative-weight cycle
iff G' has a negative-weight cycle.

G G'

0
0

0

0
0

s

© 2020 Shermer Johnson's and Flows 9

Producing Nonnegative
Weights
So suppose there are no negative-weight cycles in G or G',
and define h(v) = δ(s, v) for all vertices v in V'. Note that
this gives h(v) = 0 unless there is a negative-weight path
from some u to v.

By the triangle inequality, we have that δ(s, v) ≤ δ(s, u) +
w(u, v) for all edges (u, v) in E'. We can rewrite this as
h(v) ≤ h(u) + w(u, v), or w(u, v) + h(u) – h(v) ≥ 0. But
the right-hand side of this inequality is precisely the
definition of w*(u, v), so we get w*(u, v) ≥ 0 for every
edge (u, v) in E'.

© 2020 Shermer Johnson's and Flows 10

Producing Nonnegative
Weights

© 2020 Shermer Johnson's and Flows 11

Johnson's Algorithm
1. Augment G with s and its edges, giving G'.

2. If BELLMAN-FORD(G', s) is FALSE

3. return NIL; // G has a negative-weight cycle.

4. else

5. for each vertex v in V'

6. h(v) := δ(s, v) (from BELLMAN-FORD)

7. for each edge (u, v) in E'

8. w*(u, v) = w(u, v) + h(u) – h(v)

9. for each vertex u in V

10. run DIJKSTRA(G, w*, u) to compute δ*(u, v) for all v in V

11. for each vertex v in V

12. duv = δ*(u, v) + h(v) – h(u)

13. return D

© 2020 Shermer Johnson's and Flows 12

Flow Networks

We can use weights in digraphs to model situations other than
distances or costs. In this section (Chapter 26) we will use weights
to model the capacities of edges to transfer material.

We can think of perhaps water flowing in pipes, with the edges
representing pipes, and the capacities related to the diameter of the
pipes and the pressures the pipes can take. Or we can model parts
moving through assembly lines, current through electrical networks,
or information flowing through communication networks.

We will designate two nodes of our digraph as the source (s) and the
sink (t) of the flow. The source will have flow going out of it (only)
and the sink will have flow going into it (only). At any node other
than the source and the sink, the amount of material flowing into the
node must equal the amount flowing out; material is not allowed to
accumulate in nodes. This is called the conservation of flow.

© 2020 Shermer Johnson's and Flows 13

Flow Networks

In the Maximum-Flow Problem, we wish to compute the greatest rate
at which material can be shipped from the source to the sink without
violating any capacity constraints.

We will see two methods of solving the maximum-flow problem. The
first is known as the Ford-Fulkerson method of augmenting paths.
The second is the push-relabel method.

We start with some formal definitions and properties of flow
networks.

s t

50 30

20

105

5

s t

35 30

10

05

5

© 2020 Shermer Johnson's and Flows 14

Flow networks and flows
A flow network is a weighted, directed graph G with distinguished
vertices s and t. We let c (for capacity) represent the weight
function.

For convenience, we will assume that for every vertex v, there is a
path from s to v, and a path from v to t. Otherwise the vertex is
unusable in a flow from s to t.

A flow in G is a function f: V V → R that satisfies:

• capacity constraint: f(u, v) ≤ c(u, v) for all u, v in V.

• flow conservation: σ𝑣 ∈𝑉 𝑓 𝑣, 𝑢 = σ𝑣 ∈𝑉 𝑓 𝑢, 𝑣
for all u in V – {s, t}.

© 2020 Shermer Johnson's and Flows 15

Flow networks and flows
The flow f(u, v) from vertex u to vertex v can be zero or
positive. The value of a flow f is:

|f| =

𝑣 ∈𝑉

𝑓(𝑠, 𝑣)

that is, the total flow coming out of the source. We wish
to find a flow of maximum value.

The flow conservation property says that the total flow
into a vertex other than s or t is equal to the total flow
out of the vertex.

When neither (u, v) nor (v, u) is in E, there can be no
flow between u and v and so f(u, v) = f(v, u) = 0.

© 2020 Shermer Johnson's and Flows 16

An example

(a) The Lucky Puck Company's transport network. Capacities are in
crates/day.

(b) A flow of value 19 in the network. This is not a maximum flow.
A flow value of 23 is achievable.

© 2020 Shermer Johnson's and Flows 17

Antiparallel edges
Two edges are said to be antiparallel if one edge is (u, v) and the
other is (v, u). It will be convenient to assume that there are no
antiparallel edges in a network.

It is easy to transform a network with antiparallel edges to one with
no antiparallel edges. Suppose (u, v) and (v, u) are antiparallel
edges. Choose one of them, say (u, v), and split it by adding a
new vertex v' and replacing edge (u, v) with the pair of edges (u, v')
and (v', v). We also set the capacity of both of the new edges to
the capacity of the original edge. Do this for each pair of
antiparallel edges.

© 2020 Shermer Johnson's and Flows 18

Multiple Sources and Sinks
A maximum-flow problem may have several sources (s1, s2, etc.)
and sinks (t1, t2, etc.), rather than just one of each. We can reduce
this problem to an ordinary single-source, single-sink problem. We
simply add a supersource s and supersink t. The supersource has
edges (s, si) to each source si with capacity ∞, and the supersink has
edges (ti, t) from each sink ti with capacity ∞.

