
© 2020 Shermer All-Pairs Shortest Paths 1

All-Pairs Shortest Paths

Chapter 25

© 2020 Shermer All-Pairs Shortest Paths 2

Lecture Overview
• All-Pairs Shortest Path Problem

• APSP by basic Dynamic Programming

• Floyd-Warshall Algorithm

• Transitive Closure

© 2020 Shermer All-Pairs Shortest Paths 3

All-Pairs via Single-Source
The All-Pairs Shortest Paths (APSP) problem is to find shortest
paths (and/or their distances) between every pair of vertices
in a given graph. We typically want the output in tabular
(matrix) form.

We can solve an APSP problem by running a SSSP algorithm
|V| times, once for each vertex as the source.

If all edge weights are nonnegative, we can use Dijkstra's
algorithm.

prioirity queue APSP running time

linear array O(V3 + VE) = O(V3)

binary heap O(VE log V)

Fibonacci heap O(VE + V2 log V)

© 2020 Shermer All-Pairs Shortest Paths 4

All-Pairs Shortest Paths
If negative edge weights are allowed, Dijkstra's algorithm can no
longer be used. Instead, we run the slower Bellman-Ford algorithm
from each vertex, giving O(V2E) time, which can be (in particularly
dense graphs) as bad as O(V4).

We will see how to do better than these preliminary results that use
SSSP. Most of our algorithms, however, will use an adjacency-
matrix representation rather than the adjacency-list representation
that we have been using.

For convenience, we will assume that the vertices are
1, 2, ... , |V|, so the input is an n  n matrix W representing the
edge weights. So

wij = ൞

0 if 𝑖 = 𝑗

weight of (𝑖, 𝑗) if 𝑖  𝑗 and 𝑖, 𝑗  𝐸

∞ if 𝑖  𝑗 and 𝑖, 𝑗  𝐸/

© 2020 Shermer All-Pairs Shortest Paths 5

All-Pairs Shortest Paths
The matrix output by our algorithms is D = (dij) where entry dij is
the weight of the shortest path from vertex i to vertex j. During the
algorithm, the entries may hold other values than the shortest-path
weight.

We will also compute a predecessor matrix Π = (πij) where πij is NIL
if either i = j or there is no path from i to j, and otherwise πij is the

predecessor of j on some shortest path from vertex i to vertex j.

Similar to the predecessor subgraph of SSSP, we define a
predecessor subgraph for source i as Gπ, i = (Vπ, i , Eπ, i) where

Vπ, i = {j  V : πij  NIL} + i

and

Eπ, i = {(πij , j) : j  Vπ, i – i }
i

© 2020 Shermer All-Pairs Shortest Paths 6

All-Pairs Shortest Paths
We start with a dynamic-programming algorithm for the
all-pairs shortest paths problem. A main operation of
this algorithm is something that is akin to matrix
multiplication. We start by developing an O(V4)-time
algorithm and then improve that to O(V3 log V).

Characterizing the structure of an optimal
solution. We already know that all subpaths of a
shortest path are shortest paths. If k is the predecessor
of j on a shortest path from i to j, then

δ(i, j) = δ(i, k) + wkj.

© 2020 Shermer All-Pairs Shortest Paths 7

All-Pairs Shortest Paths
Recurively defining the value of an optimal

solution. Let 𝑙𝑖𝑗
𝑚

be the minimum weight of any path

from vertex i to vertex j that contains at most m edges.

𝑙𝑖𝑗
(𝑚)

= 0 if 𝑖 = 𝑗

𝑙𝑖𝑗
(0)

= ∞ if 𝑖 ≠ 𝑗

𝑙𝑖𝑗
(𝑚)

= min 𝑙𝑖𝑗
(𝑚−1)

, min
1 ≤𝑘 ≤𝑛

𝑙𝑖𝑘
(𝑚−1)

+ 𝑤𝑘𝑗

= min
1 ≤𝑘 ≤𝑛

𝑙𝑖𝑘
(𝑚−1)

+ 𝑤𝑘𝑗

Since shortest paths contain at most n-1 edges,

δ(i, j) = 𝑙𝑖𝑗
(𝑛−1)

and 𝑙𝑖𝑗
(𝑛−1)

= 𝑙𝑖𝑗
(𝑛)

= 𝑙𝑖𝑗
(𝑛+1)

= …

i k

j

wkj

𝑙𝑖𝑘
(𝑚−1)

© 2020 Shermer All-Pairs Shortest Paths 8

All-Pairs Shortest Paths
Computing the value of an optimal solution
bottom-up. From our input matrix W = (wij), we

compute matrices L(1), L(2), ... L(n-1), where L(m) = (𝑙𝑖𝑗
(𝑚)

).

L(n-1) will contain the shortest-path lengths. Since

𝑙𝑖𝑗
(1)

= 𝑤𝑖𝑗 for all i, j  V, L(1) = W.

The critical part of the algorithm is the following routine,
which will, given the matrices L(m-1) and W, return the
matrix L(m). That is, it extends the shortest paths
computed so far by one more edge.

© 2020 Shermer All-Pairs Shortest Paths 9

Extend Shortest Paths
EXTEND-SHORTEST-PATHS(L, W)

1. n = L.numRows()
2. allocate matrix L' as n  n.
3. for i = 1 to n
4. for j = 1 to n
5. l'ij = ∞
6. for k = 1 to n
7. l'ij = min(l'ij, lik + wkj)
8. return L'

O(n3)

Look at what happens when we change:
L → A, W → B, L' → C, + → ∙, min → +, ∞ → 0

© 2020 Shermer All-Pairs Shortest Paths 10

Matrix Multiply
MATRIX-MULTIPLY(A, B)

1. n = A.numRows()
2. allocate matrix C as n  n.
3. for i = 1 to n
4. for j = 1 to n
5. cij = 0
6. for k = 1 to n
7. cij = cij + aik∙bkj

8. return L'

We get the straightforward matrix multiply routine for
square matrices.

© 2020 Shermer All-Pairs Shortest Paths 11

Treating EXTEND-SHORTEST-
PATHS as a Multiplication
We return to APSP. Let A  B denote the matrix
"product" returned by EXTEND-SHORTEST-PATHS(A, B),
and A[k] denote A  A  ...  A, where there are k A's in
the product.

L(1) = L(0)  W = W
L(2) = L(1)  W = W[2]

L(3) = L(2)  W = W[3]

...
L(n-1) = L(n-2)  W = W[n-1]

Note that L(n-1) = W[n-1] is our solution.

© 2020 Shermer All-Pairs Shortest Paths 12

A Slow (But Correct) APSP
SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

1. n = W.numRows()
2. L(1) = W
3. for m = 2 to n-1
4. L(m) = EXTEND-SHORTEST-PATHS(L(m-1), W)
5. return L(n-1)

We can improve this by noting that we really only need
to compute L(n-1), not all L(m). A common strategy for
doing this is repeated squaring.

© 2020 Shermer All-Pairs Shortest Paths 13

We wish to compute L(n-1) = W[n-1]. To do this, we're
going to repeatedly "square" W.

L(1) = W
L(2) = W[2] = W  W
L(4) = W[4] = W[2]  W[2]

L(8) = W[8] = W[4]  W[4]

...

𝐿(2𝑘) = 𝑊[2𝑘] = 𝑊[2𝑘−1] 𝑊[2𝑘−1]

We go until the smallest k such that 2k ≥ n – 1, or
k = log(𝑛 − 1) . (Recall that L(p) = L(n-1) for p ≥ n – 1.)

Repeated Squaring

works only if  is associative
(which it is).

© 2020 Shermer All-Pairs Shortest Paths 14

A Faster APSP
FASTER-ALL-PAIRS-SHORTEST-PATHS(W)

1. n = W.numRows()
2. L(1) = W
3. m = 1
4. while m < n-1
5. L(2m) = EXTEND-SHORTEST-PATHS(L(m), L(m))
6. m = 2m
7. return L(m)

Noting that the loop of lines 4-6 iterates O(log n) times,
we get a total time of O(n3 log n).

© 2020 Shermer All-Pairs Shortest Paths 15

A Different DP Formulation
We now develop a different approach to APSP, but it is
still a dynamic programming solution. We allow
negative-weight edges but no negative-weight cycles.
Our algorithm will run in O(V3) time.

The intermediate vertices of a shortest path p = <v1, v2,
..., vl> are the vertices v2, v3, ..., vl-1.

Assume V = {1, 2, ..., n} and consider a subset Vk =
{1, 2, ... k} of V for some k. We consider the shortest
paths where all of the intermediate vertices are drawn

from Vk. Let 𝑑𝑖𝑗
(𝑘)

represent the shortest path length

from i to j using intermediate vertices only from Vk.

© 2020 Shermer All-Pairs Shortest Paths 16

A Different DP Formulation
A shortest path p from i to j with intermediate vertices
from Vk can either use the vertex k or not. If it does not

use vertex k, then its length is 𝑑𝑖𝑗
(𝑘−1)

. If it does use

vertex k, then it uses it only once, because a shortest
path has no cycles. Now p can be broken into the part
before vertex k and the part after vertex k. The length

of the former is 𝑑𝑖𝑘
(𝑘−1)

and the length of the latter is

𝑑𝑘𝑗
(𝑘−1)

.

© 2020 Shermer All-Pairs Shortest Paths 17

A Different DP Formulation
If k = 0, then there are no intermediate vertices and the
length of the shortest path from i to j under these
circumstances is simply wij. In summary:

𝑑𝑖𝑗
(𝑘)

= ቐ
𝑤𝑖𝑗 if 𝑘 = 0

min(𝑑𝑖𝑗
𝑘−1

, 𝑑𝑖𝑘
𝑘−1

+ 𝑑𝑘𝑗
𝑘−1

) if 𝑘 > 0

We can now compute 𝑑𝑖𝑗
(𝑘)

in a bottom-up fashion:

© 2020 Shermer All-Pairs Shortest Paths 18

Floyd-Warshall Algorithm
FLOYD-WARSHALL(W)
1. n = W.numRows() O(1)
2. D(0) = W O(1) or O(n2)
3. for k = 1 to n
4. for i = 1 to n O(n3) iter.
5. for j = 1 to n

6. 𝑑𝑖𝑗
(𝑘)

= min(𝑑𝑖𝑗
𝑘−1

, 𝑑𝑖𝑘
𝑘−1

+ 𝑑𝑘𝑗
𝑘−1

) O(1)

7. return D(n) O(1)

O(n3) time

© 2020 Shermer All-Pairs Shortest Paths 19

Floyd-Warshall Shortest Paths
FLOYD-WARSHALL is a method of constructing shortest
path distances but doesn't say how to get the shortest
paths themselves. It turns out that there are a variety of
different methods for doing so that do not increase the
complexity.

The first method of computing shortest paths is to
compute the matrix D of shortest-path distances and then
to compute the predecessor matrix Π from D itself. A

good exercise is to give an algorithm to do this that runs
in O(n3) time.

© 2020 Shermer All-Pairs Shortest Paths 20

Floyd-Warshall Shortest Paths
A second method is to compute Π as Floyd-Warshall computes the

matrices D(k). We compute matrices Π(k) where 𝜋𝑖𝑗
(𝑘)

is the predecessor

of vertex j on a shortest path from vertex i with all intermediate
vertices in Vk.

Here is our recursive formulation of 𝜋𝑖𝑗
(𝑘)

:

𝜋𝑖𝑗
(0)

= ൝
𝑁𝐼𝐿 if 𝑖 = 𝑗 or 𝑤𝑖𝑗 = ∞

𝑖 if 𝑖 ≠ 𝑗 and 𝑤𝑖𝑗 < ∞

𝜋𝑖𝑗
(𝑘)

= ቐ
𝜋𝑖𝑗

(𝑘−1)
if 𝑑𝑖𝑗

(𝑘−1)
≤ 𝑑𝑖𝑘

𝑘−1
+ 𝑑𝑘𝑗

(𝑘−1)

𝜋𝑘𝑗
(𝑘−1)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Exercise 25.2-7 of your text introduces yet another way of computing
shortest paths in Floyd-Warshall.

© 2020 Shermer All-Pairs Shortest Paths 21

Transitive Closure
The transitive closure of a directed graph G = (V, E) is defined
as the graph G* = (V, E*) where

E* = {(i, j) : there is a path from i to j in G}.

One way to compute the transitive closure of a graph is to
assign a weight of 1 to each edge and then to run Floyd-
Warshall on it. If there is a path from i to j, we get dij < n.
Otherwise, we get dij= ∞.

There is a similar way that involves changing the min and + in
Floyd-Warshall to logical OR and logical AND. This can save
time and space in practice, by requiring only boolean (1-bit)
matrix entries and the simpler logical operations.

© 2020 Shermer All-Pairs Shortest Paths 22

Transitive Closure
We can formulate transitive closure recursively by defining

𝑡𝑖𝑗
𝑘 to be 1 if there exists a path in graph G from vertex i to

vertex j with all intermediate vertices in Vk, and to be 0
otherwise. Then we get

𝑡𝑖𝑗
(0)

= ቊ
1 if 𝑖 = 𝑗 or 𝑖, 𝑗  𝐸
0 otherwise

and

𝑡𝑖𝑗
(𝑘)

= 𝑡𝑖𝑗
(𝑘−1)

 (𝑡𝑖𝑘
𝑘−1

 𝑡𝑘𝑗
𝑘−1

)

© 2020 Shermer All-Pairs Shortest Paths 23

Transitive Closure
TRANSITIVE-CLOSURE(G)
1. n = |G.vertices|
2. for i = 1 to n
3. for j = 1 to n
4. if i = j or (i, j)  G.edges O(n2)

5. 𝑡𝑖𝑗
(0)

= 1

6. else 𝑡𝑖𝑗
(0)

= 0

7. for k = 1 to n
8. for i = 1 to n
9. for j = 1 to n O(n3)

10. 𝑡𝑖𝑗
(𝑘)

= 𝑡𝑖𝑗
(𝑘−1)

 (𝑡𝑖𝑘
𝑘−1

 𝑡𝑘𝑗
𝑘−1

)

11.return T(n)

