Minimum Spanning Trees

Chapter 23

Lecture Overview

- Minimum Spanning Trees
 - Kruskal's Algorithm
 - Prim's Algorithm

An Edge-Weighted Graph Problem

In constructing large industrial sites, it is sometimes necessary to connect various locations by roads. We can model one such problem as an edge-weighted graph: the vertices represent the locations we want to connect, an edge represents a possible road, and each edge has a weight that represents the cost of building that road.

The question we ask is the following: what is the road network with minimum total cost that joins all the locations together?

Trees

The answer will undoubtedly be a tree. Because if the road network had a cycle, then we could remove one edge of the cycle and have a cheaper road network that still connected all the locations. And if the road network was not connected, then it wouldn't satisfy the "joins all locations together" specification. And a connected acyclic graph is a tree.

Minimum Spanning Trees

Minimum Weight Spanning

Trees

A graph G = (V, E) is said to be spanned by a subgraph G' = (V', E') of G if V' = V. Then the subgraph G' is said to be spanning the graph G. Since we must join all locations together in our problem, our tree must be a spanning tree. Furthermore, we want the minimum cost network; in terms of weighted graphs, this is a network of minimum weight. So our problem asks for a minimum-weight spanning tree, 16 which is often shortened to minimum spanning tree or MST.

Generic Greedy Algorithm

Assume we have a graph G = (V, E) with a weight function w : $E \rightarrow \mathbf{R}$, and we wish to find a MST for G.

We will now present a generic greedy algorithm for this problem, one that builds up a set of edges A such that prior to every iteration, A is a subset of the edges of some MST.

The algorithm relies on finding safe edges; a safe edge e is an edge that can be added to A such that A + e is also a subset of the edges of some MST.

Generic Greedy Algorithm

GENERIC-MST(G, w)

A = Ø
 while A does not form a spanning tree
 find an edge e that is safe for A
 A = A + e
 return A

Well, that doesn't really say much but it is good algorithm design. It outlines an approach of building up A one edge at a time, by adding safe edges, until we have a spanning tree. We've defined safe edges but haven't said how to find them. To complete the design, we'll have to do that.

Generic Algorithm Invariant

GENERIC-MST(G, w)

A = Ø
 while A does not form a spanning tree
 find an edge e that is safe for A
 A = A + e
 return A

Recall that the invariant was "prior to each iteration, A is a subset of the edges of some MST". We'll use the invariant as follows:

Initialization: After line 1, A trivially satisfies the loop invariant.
Maintenance: The loop in lines 2-4 maintains the invariant by adding only safe edges.
Termination: All edges added to A are in a MST, and so the set A returned by line 5 must be a MST.

Safe Edges - Preliminaries

A safe edge must always exist in line 3 because when line 3 is executed, the invariant dictates that there is a MST T with A \subset T. Any edge in T – A is safe.

To establish a rule for recognizing safe edges, we need some new concepts.

A cut (S, V - S) of a graph is a partition of its vertices into two sets.

Crossing a Cut and Respecting Edges

An edge is said to cross a cut (S, V - S) if one of its endpoints is in S and the other is in V - S.

A cut is said to respect a set A of edges if no edge of A crosses the cut.

Light Edges

An edge is said to be a light edge crossing a cut if its weight is the minimum of any edge crossing the cut.

In general, we say that an edge is a light edge satisfying a given property if its weight is the minimum of all edges satisfying that property.

Recognizing Safe Edges

Theorem. Let G = (V, E) be a connected graph with weight function w: $E \rightarrow \mathbf{R}$. Let A be a subset of E that is included in some MST for G, let (S, V - S) be any cut of G that respects A, and let e be a light edge crossing (S, V - S). Then e is safe for A.

Proof. Let T be a MST that includes A. If T contains the light edge e, we are done. If not, we shall construct another MST T' that includes A + e.

Let e = (u, v). This edge, along with edges on the path p from u to v in T, forms a cycle.

Recognizing Safe Edges

Since u and v are on opposite sides of the cut (S, V – S), there is at least one edge (x, y) on the path that also crosses the cut. (x, y) is not in A. Now T' = T - (x, y) + (u, v)is another spanning tree of G.

But w(T') = w(T) - w(x, y) + w(u, v). Since (u, v) was a light edge, $w(u, v) \le w(x, y)$ and so $w(T') \le w(T)$. But w(T) was minimum, so w(T') = w(T) and T' is another minimum spanning tree. Thus (u, v) is safe.

Recognizing Safe Edges

Corollary. Let G = (V, E) be a connected graph with weight function w: $E \rightarrow \mathbf{R}$. Let A be a subset of E that is included in some MST for G, and let $C = (V_c, E_c)$ be a connected component (tree) in $G_A = (V, A)$. If e is a light edge connecting C to some other component of G_A , then e is safe for A.

Proof. The cut $(V_c, V - V_c)$ respects A, and e is a light edge for this cut.

Kruskal's and Prim's Algorithms

The two MST algorithms that we will see are elaborations of the generic MST algorithm. They differ in that they use different rules to determine a safe edge in line 3 of GENERIC-MST.

In Kruskal's algorithm, the set A is a forest. The safe edge e is always a light edge that connects two different connected components of G_A (trees of the forest).

In Prim's algorithm, the set A forms a single tree. The safe edge e is always a light edge connecting the tree to a vertex not in the tree.

Kruskal's Algorithm

Kruskal's algorithm makes use of a fast way to detect and maintain connected components of A as edges are added to A. This is the Union-Find problem, where we start with each vertex in its own connected component, and we have operations

UNION(u, v)	which adds the edge (u, v), connecting the components for u and v. [I.e. it unions the sets for u and v together]
FIND-SET(u)	which finds the "name" (unique identifier) of the set containing u.
There is an auxilliary op	peration
MAKE-SET(u)	which creates a new set consisting of just u

Minimum Spanning Trees

Kruskal's Algorithm

MST-KRUSKAL(G, w)

- **1.** A = Ø
- 2. for each vertex v
- 3. MAKE-SET(v)
- 4. sort the edges of E into nondecreasing order by weight w
- **5. for** each edge (u, v) in E, taken in nondecreasing order by w
- 6. if FIND-SET(u) \neq FIND-SET(v)
- **7.** A = A + (u, v)
- 8. UNION(u, v)
- 9. return A

Kruskal's Algorithm Example

Minimum Spanning Trees

Kruskal's Algorithm Example

© 2020 Shermer

Minimum Spanning Trees

19

Kruskal's Algorithm Example

© 2020 Shermer

Minimum Spanning Trees

20

Kruskal's Algorithm Analysis

The running time for Kruskal's algorithm depends on the implementation of the union-find problem. (The text calls this the "disjoint-set" problem). The best method for this problem, for |V| MAKE-SET operations and O(E) FIND-SET and UNION operations, uses O((V+E) α (V)) time, where α (n) is a **very** slowly growing function known as the inverse of Ackermann's function. We can simplify this to O(E α (V)) because G is connected and therefore V \leq E + 1.

Aside: Ackermann's Function

(See section 21.4 of text. This is not quite Ackermann's function, but is very similar.)

Let
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0 \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1 \end{cases}$$

where $A_{k-1}^{(j+1)}(j) = A_{k-1}(A_{k-1}(A_{k-1}(\dots A_{k-1}(j))))$ j+1 times

So $A_0(j) = j + 1$ $A_1(j) = A_0(A_0(A_0...(A_0(j)))) = j + (j + 1)$ $A_2(j) = A_1(A_1(A_1...(A_1(j)))) = 2^{j+1}(j + 1) - 1$

Aside: Ackermann's Function

 $A_{3}(1) = A_{2}(A_{2}(1)) = A_{2}(7) = 2^{8} \cdot 8 - 1 = 2^{11} - 1 = 2047$ $A_{4}(1) = A_{3}(A_{3}(1)) = A_{3}(2047) = A_{2}^{(2048)}(2047)$ $= A_{2}^{(2047)}(A_{2}(2047)) = A_{2}^{(2047)}(2^{2048}(2048) - 1)$ $= A_{2}^{(2047)}(2^{2059} - 1)$

Now $2^{2059} > (2^{10})^{205} >> (10^3)^{205} = 10^{615}$

10⁸⁰ is the estimated number of atoms in the universe.
10¹⁸ is the estimated number of seconds until the big crunch.

so if every atom did one calculation per attosecond until the big crunch, we wouldn't get anywhere near 10^{615} . And we haven't even looked at the effect of $A_2^{(2047)}(...)!!!$

Aside: Inverse Ackermann's Function

Let $\alpha(n)$ be the inverse of $A_n(1)$:

 $\alpha(n) = \min \{ k : A_k(1) \ge n \}$

It is the lowest level k for which $A_k(1)$ is at least n.

 $\alpha(n) = \begin{cases} 0 & \text{for } 0 \le n \le 2\\ 1 & \text{for } n = 3\\ 2 & \text{for } 4 \le n \le 7\\ 3 & \text{for } 8 \le n \le 2047\\ 4 & \text{for } 2048 \le n \le A_4(1) \end{cases}$

So for all practical purposes, $\alpha(n) \leq 4$.

Kruskal's Algorithm Analysis

MST-KRUSKAL(G, w)

 $O(E \log E) + (union-find) = O(E \log V) + O(E\alpha(V)) = O(E \log V)$

Prim's Algorithm

Prim's algorithm has the property that the edges of the set A always form a single tree. At each step, a light edge is added that connects A to an isolated vertex of $G_A = (V, A)$. By the corollary, this is a safe edge, and so the algorithm correctly constructs a minimum spanning tree.

Prim's holds all the vertices that are **not** in the tree in a min-priority queue Q. The key for any v in this queue is the minimum weight of any edge connecting v to the tree. The algorithm assigns a field **parent** to every node that it puts in the tree; the parent relationship implicitly holds the set A: that is,

A = {(v, v.parent) : $v \in V - \{r\} - Q$ }

Prim's Algorithm

MST-PRIM(G, w, r) // r is root of tree

- **1.** for each vertex u in G
- 2. u.key = ∞
- 3. u.parent = NIL
- 4. r.key = 0
- 5. initialize Q with all vertices of G
- 6. while Q is not empty
- **7.** u = Q.EXTRACT-MIN()
- 8. for each v in Adj[u]
- 9.if $v \in Q$ and w(u, v) < v.key10.v.parent = u
 - v.key = w(u, v)

11.

Prim's Algorithm Example

© 2020 Shermer

Minimum Spanning Trees

Prim's Algorithm Example

© 2020 Shermer

Minimum Spanning Trees

29

Prim's Algorithm Analysis

MST-PRIM(G, w, r) // r is root of tree O(V) iterations **1.** for each vertex u in G 2. u.key = ∞ O(V) total 3. u.parent = NIL O(V) total 4. $r_{key} = 0$ O(1)5. initialize Q with all vertices of G O(V) (heapify) **6.** while Q is not empty O(V) iterations 7. u = Q.EXTRACT-MIN()O(V log V) total 8. for each v in Adj[u] O(E) total iterations 9. if $v \in Q$ and w(u, v) < v.key O(E) total 10. v.parent = uO(E) total 11. v.key = w(u, v)O(E) total + PQ ops O(E log V)

 $O(V \log V) + O(E \log V)$

 $= O(E \log V)$

Minimum Spanning Trees

Prim's Algorithm Improvement

We may improve the running time of Prim's algorithm with a data structure known as the Fibonacci Heap. A Fibonacci heap has better amortized time for its operations than a regular heap. In particular, it has

O(log V) amortized time for EXTRACT-MIN

O(1) amortized time for DECREASE-KEY (used in line 11).

So the extract-min operations amortize to the same amount, but the Priority Queue Operations in line 11 take O(E) time total. This gives a total of $O(V \log V) + O(E) = O(E + V \log V)$ time.

We have not covered Fibonacci Heaps (and probably won't), but they are in Chapter 20 of the text.