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Minimum Spanning Trees
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Lecture Overview
• Minimum Spanning Trees

• Kruskal's Algorithm

• Prim's Algorithm
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An Edge-Weighted Graph 
Problem
In constructing large industrial sites, it is sometimes 
necessary to connect various locations by roads.   We 
can model one such problem as an edge-weighted
graph: the vertices represent the locations we want to 
connect, an edge represents a possible road, and each 
edge has a weight that represents the cost of building 
that road.  

The question we ask is the following:  
what is the road network with 
minimum total cost that joins all the 
locations together?6
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Trees
The answer will undoubtedly be a tree.  Because if the 
road network had a cycle, then we could remove one 
edge of the cycle and have a cheaper road network that 
still connected all the locations.  And if the road network 
was not connected, then it wouldn't satisfy the "joins all 
locations together" specification.  And a connected 
acyclic graph is a tree.
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Minimum Weight Spanning 
Trees
A graph G = (V, E) is said to be spanned by a subgraph 
G' = (V', E') of G if V' = V.  Then the subgraph G' is said 
to be spanning the graph G.  Since we must join all 
locations together in our problem, our tree must be a 
spanning tree.   Furthermore, we want the minimum 
cost network; in terms of weighted graphs, this is a 
network of minimum weight.  So our problem asks for a 
minimum-weight spanning tree, 
which is often shortened to 
minimum spanning tree or MST.
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Generic Greedy Algorithm
Assume we have a graph G = (V, E) with a weight 
function w : E → R, and we wish to find a MST for G.

We will now present a generic greedy algorithm for this 
problem, one that builds up a set of edges A such that 
prior to every iteration, A is a subset of the edges of 
some MST.

The algorithm relies on finding safe edges; a safe edge e 
is an edge that can be added to A such that A + e is also 
a subset of the edges of some MST.
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Generic Greedy Algorithm
GENERIC-MST(G, w)

1. A = Ø
2. while A does not form a spanning tree
3. find an edge e that is safe for A
4. A = A + e
5. return A

Well, that doesn't really say much but it is good algorithm design.  It 
outlines an approach of building up A one edge at a time, by adding 
safe edges, until we have a spanning tree.  We've defined safe 
edges but haven't said how to find them.  To complete the design, 
we'll have to do that.
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Generic Algorithm Invariant
GENERIC-MST(G, w)

1. A = Ø
2. while A does not form a spanning tree
3. find an edge e that is safe for A
4. A = A + e
5. return A

Recall that the invariant was "prior to each iteration, A is a subset of 
the edges of some MST".  We'll use the invariant as follows:

Initialization: After line 1, A trivially satisfies the loop invariant.
Maintenance: The loop in lines 2-4 maintains the invariant by 
adding only safe edges.
Termination:  All edges added to A are in a MST, and so the set A 
returned by line 5 must be a MST.
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Safe Edges - Preliminaries
A safe edge must always exist in line 3 because when line 3 is 
executed, the invariant dictates that there is a MST T with A  T. 
Any edge in T – A  is safe. 

To establish a rule for recognizing safe edges, we need some new 
concepts.

A cut (S, V – S) of a graph is a partition of its vertices into two sets. 
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Crossing a Cut and
Respecting Edges
An edge is said to cross a cut 
(S, V – S) if one of its endpoints 
is in S and the other is in V – S.   

S

V – S 

S

V – S 

A cut is said to respect a set A 
of edges if no edge of A 
crosses the cut.
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Light Edges
An edge is said to be a light
edge crossing a cut if its weight 
is the minimum of any edge 
crossing the cut.

In general, we say that an edge is a light edge 
satisfying a given property if its weight is the 
minimum of all edges satisfying that property.
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Recognizing Safe Edges
Theorem. Let G = (V, E) be a connected graph with 
weight function w: E → R.  Let A be a subset of E that is 
included in some MST for G, let (S, V – S) be any cut of 
G that respects A, and let e be a light edge crossing
(S, V – S).   Then e is safe for A.

Proof. Let T be a MST that includes A.  If T contains the 
light edge e, we are done.  If not, we shall construct 
another MST T' that includes A + e.

Let e = (u, v).   This edge, along with edges on the path 
p from u to v in T, forms a cycle.
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Recognizing Safe Edges

But w(T') = w(T) – w(x, y) + w(u, v).  Since (u, v) was a 
light edge, w(u, v) ≤ w(x, y) and so w(T') ≤ w(T).  But 
w(T) was minimum, so w(T') = w(T) and T' is another 
minimum spanning tree.   Thus (u, v) is safe. ■

Since u and v are on opposite 
sides of the cut (S, V – S), there 
is at least one edge (x, y) on the 
path that also crosses the cut.  
(x, y) is not in A.  Now 

T' = T – (x, y) + (u, v)
is another spanning tree of G.



© 2020 Shermer Minimum Spanning Trees 14

Recognizing Safe Edges
Corollary. Let G = (V, E) be a connected graph with 
weight function w: E → R.  Let A be a subset of E that is 
included in some MST for G, and let C = (Vc, Ec) be a 
connected component (tree) in GA = (V, A).  If e is a light 
edge connecting C to some other component of GA, then 
e is safe for A.

Proof. The cut 
(Vc, V – Vc) respects 
A, and e is a light 
edge for this cut. ■
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Kruskal's and Prim's 
Algorithms
The two MST algorithms that we will see are elaborations 
of the generic MST algorithm.  They differ in that they 
use different rules to determine a safe edge in line 3 of 
GENERIC-MST.

In Kruskal's algorithm, the set A is a forest.  The safe 
edge e is always a light edge that connects two different 
connected components of GA (trees of the forest).

In Prim's algorithm, the set A forms a single tree.  The 
safe edge e is always a light edge connecting the tree to 
a vertex not in the tree. 
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Kruskal's Algorithm
Kruskal's algorithm makes use of a fast way to detect and maintain 
connected components of A as edges are added to A.   This is the 
Union-Find problem, where we start with each vertex in its own 
connected component, and we have operations

UNION(u, v) which adds the edge (u, v), connecting the 
components for u and v. [I.e. it unions the
sets for u and v together]

FIND-SET(u) which finds the "name" (unique identifier)
of the set containing u.

There is an auxilliary operation

MAKE-SET(u) which creates a new set consisting of just u.
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Kruskal's Algorithm
MST-KRUSKAL(G, w)

1. A = Ø

2. for each vertex v

3. MAKE-SET(v)

4. sort the edges of E into nondecreasing order by weight w

5. for each edge (u, v) in E, taken in nondecreasing order by w

6. if FIND-SET(u)  FIND-SET(v)

7. A = A + (u, v)

8. UNION(u, v)

9. return A
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Kruskal's Algorithm Example
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Kruskal's Algorithm Example
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Kruskal's Algorithm Example
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Kruskal's Algorithm Analysis
The running time for Kruskal's algorithm depends on the 
implementation of the union-find problem.  (The text 
calls this the "disjoint-set" problem).   The best method 
for this problem, for |V| MAKE-SET operations and O(E) 
FIND-SET and UNION operations, uses O((V+E)(V)) 
time, where (n) is a very slowly growing function 
known as the inverse of Ackermann's function.  We can 
simplify this to O(E(V)) because G is connected and 
therefore V ≤ E + 1.
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Aside: Ackermann's Function
(See section 21.4 of text.  This is not quite Ackermann's 
function, but is very similar.)

Let 𝐴𝑘 𝑗 = ൝
𝑗 + 1 if 𝑘 = 0

𝐴𝑘−1
𝑗+1

(𝑗) if 𝑘 ≥ 1

where 𝐴𝑘−1
𝑗+1

𝑗 = 𝐴𝑘−1(𝐴𝑘−1 𝐴𝑘−1 …𝐴𝑘−1 j )

j+1 times

So 𝐴0 𝑗 = 𝑗 + 1
𝐴1 𝑗 = 𝐴0(𝐴0(𝐴0...(𝐴0 𝑗 ))) = 𝑗 + (𝑗 + 1)
𝐴2 𝑗 = 𝐴1(𝐴1(𝐴1...(𝐴1 𝑗 ))) = 2𝑗+1(𝑗 + 1) − 1
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Aside: Ackermann's Function
𝐴3 1 = 𝐴2 𝐴2 1 = 𝐴2 7 = 28 ∙ 8 − 1 = 211 − 1 = 2047

𝐴4 1 = 𝐴3 𝐴3 1 = 𝐴3 2047 = 𝐴2
2048

2047

= 𝐴2
2047

𝐴2 2047 = 𝐴2
2047

22048 2048 − 1

= 𝐴2
2047

22059 − 1

Now 22059 > (210)205>> (103)205 = 10615

1080 is the estimated number of atoms in the universe.
1018 is the estimated number of seconds until the big crunch.

so if every atom did one calculation per attosecond until the big 
crunch, we wouldn't get anywhere near 10615.  And we haven't even 

looked at the effect of 𝐴2
2047

… ‼!
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Aside: Inverse Ackermann's 
Function
Let (n) be the inverse of An(1):

(n) = min { k : Ak(1) ≥ n}

It is the lowest level k for which Ak(1) is at least n.

𝛼 𝑛 =

0 for 0 ≤ 𝑛 ≤ 2
1 for 𝑛 = 3
2 for 4 ≤ 𝑛 ≤ 7
3 for 8 ≤ 𝑛 ≤ 2047
4 for 2048 ≤ 𝑛 ≤ 𝐴4(1)

So for all practical purposes, (n) ≤ 4.
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Kruskal's Algorithm Analysis
MST-KRUSKAL(G, w)

1. A = Ø O(1)
2. for each vertex v O(V)
3. MAKE-SET(v) (union-find)
4. sort the E into nondecreasing order ... O(E log E)
5. for each edge (u, v) in E, taken in ... O(E)
6. if FIND-SET(u)  FIND-SET(v) (union-find)
7. A = A + (u, v) O(E)
8. UNION(u, v) (union-find)
9. return A O(1)

O(E log E) + (union-find) =
O(E log V) + O(E(V)) =
O(E log V)
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Prim's Algorithm
Prim's algorithm has the property that the edges of the set A always 
form a single tree.  At each step, a light edge is added that connects 
A to an isolated vertex of GA= (V, A).  By the corollary, this is a safe 
edge, and so the algorithm correctly constructs a minimum spanning 
tree.

Prim's holds all the vertices that are not in the tree in a min-priority 
queue Q.  The key for any v in this queue is the minimum weight of 
any edge connecting v to the tree.  The algorithm assigns a field 
parent to every node that it puts in the tree; the parent relationship 
implicitly holds the set A: that is,

A = {(v, v.parent) : v  V – {r} – Q} 
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Prim's Algorithm
MST-PRIM(G, w, r) // r is root of tree

1. for each vertex u in G
2. u.key = ∞
3. u.parent = NIL

4. r.key = 0
5. initialize Q with all vertices of G
6. while Q is not empty
7. u = Q.EXTRACT-MIN()
8. for each v in Adj[u]
9. if v  Q and w(u, v) < v.key
10. v.parent = u
11. v.key = w(u, v)
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Prim's Algorithm Example
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Prim's Algorithm Example
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Prim's Algorithm Analysis
MST-PRIM(G, w, r) // r is root of tree

1. for each vertex u in G O(V) iterations
2. u.key = ∞ O(V) total 
3. u.parent = NIL O(V) total 

4. r.key = 0 O(1)
5. initialize Q with all vertices of G O(V) (heapify)
6. while Q is not empty O(V) iterations
7. u = Q.EXTRACT-MIN() O(V log V) total
8. for each v in Adj[u] O(E) total iterations
9. if v  Q and w(u, v) < v.key O(E) total
10. v.parent = u O(E) total
11. v.key = w(u, v) O(E) total + PQ ops

O(E log V)

O(V log V) + O(E log V)

= O(E log V)
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Prim's Algorithm Improvement
We may improve the running time of Prim's algorithm with a data 
structure known as the Fibonacci Heap.   A Fibonacci heap has better 
amortized time for its operations than a regular heap.  In particular, it
has 

O(log V) amortized time for EXTRACT-MIN

O(1)      amortized time for DECREASE-KEY (used in line 11).

So the extract-min operations amortize to the same amount, but the 
Priority Queue Operations in line 11 take O(E) time total.  This gives a 
total of O(V log V) + O(E) = O(E + V log V) time.

We have not covered Fibonacci Heaps (and probably won't), but they 
are in Chapter 20 of the text.


