
© 2020 Shermer Minimum Spanning Trees 1

Minimum Spanning Trees

Chapter 23

© 2020 Shermer Minimum Spanning Trees 2

Lecture Overview
• Minimum Spanning Trees

• Kruskal's Algorithm

• Prim's Algorithm

© 2020 Shermer Minimum Spanning Trees 3

An Edge-Weighted Graph
Problem
In constructing large industrial sites, it is sometimes
necessary to connect various locations by roads. We
can model one such problem as an edge-weighted
graph: the vertices represent the locations we want to
connect, an edge represents a possible road, and each
edge has a weight that represents the cost of building
that road.

The question we ask is the following:
what is the road network with
minimum total cost that joins all the
locations together?6

5

812

16

7

13

9

14

24

28

21

19

23
18

12

© 2020 Shermer Minimum Spanning Trees 4

Trees
The answer will undoubtedly be a tree. Because if the
road network had a cycle, then we could remove one
edge of the cycle and have a cheaper road network that
still connected all the locations. And if the road network
was not connected, then it wouldn't satisfy the "joins all
locations together" specification. And a connected
acyclic graph is a tree.

6

5

812

16

7

13

9

14

24

28

21

19

23
18

12 6

5

812

16

7

13

9

14

24

28

21

19

23
18

12

© 2020 Shermer Minimum Spanning Trees 5

Minimum Weight Spanning
Trees
A graph G = (V, E) is said to be spanned by a subgraph
G' = (V', E') of G if V' = V. Then the subgraph G' is said
to be spanning the graph G. Since we must join all
locations together in our problem, our tree must be a
spanning tree. Furthermore, we want the minimum
cost network; in terms of weighted graphs, this is a
network of minimum weight. So our problem asks for a
minimum-weight spanning tree,
which is often shortened to
minimum spanning tree or MST.

6

5

812

16

7

13

9

14

24

28

21

19

23
18

12

© 2020 Shermer Minimum Spanning Trees 6

Generic Greedy Algorithm
Assume we have a graph G = (V, E) with a weight
function w : E → R, and we wish to find a MST for G.

We will now present a generic greedy algorithm for this
problem, one that builds up a set of edges A such that
prior to every iteration, A is a subset of the edges of
some MST.

The algorithm relies on finding safe edges; a safe edge e
is an edge that can be added to A such that A + e is also
a subset of the edges of some MST.

© 2020 Shermer Minimum Spanning Trees 7

Generic Greedy Algorithm
GENERIC-MST(G, w)

1. A = Ø
2. while A does not form a spanning tree
3. find an edge e that is safe for A
4. A = A + e
5. return A

Well, that doesn't really say much but it is good algorithm design. It
outlines an approach of building up A one edge at a time, by adding
safe edges, until we have a spanning tree. We've defined safe
edges but haven't said how to find them. To complete the design,
we'll have to do that.

© 2020 Shermer Minimum Spanning Trees 8

Generic Algorithm Invariant
GENERIC-MST(G, w)

1. A = Ø
2. while A does not form a spanning tree
3. find an edge e that is safe for A
4. A = A + e
5. return A

Recall that the invariant was "prior to each iteration, A is a subset of
the edges of some MST". We'll use the invariant as follows:

Initialization: After line 1, A trivially satisfies the loop invariant.
Maintenance: The loop in lines 2-4 maintains the invariant by
adding only safe edges.
Termination: All edges added to A are in a MST, and so the set A
returned by line 5 must be a MST.

© 2020 Shermer Minimum Spanning Trees 9

Safe Edges - Preliminaries
A safe edge must always exist in line 3 because when line 3 is
executed, the invariant dictates that there is a MST T with A  T.
Any edge in T – A is safe.

To establish a rule for recognizing safe edges, we need some new
concepts.

A cut (S, V – S) of a graph is a partition of its vertices into two sets.

S

V – S

S

V – S

© 2020 Shermer Minimum Spanning Trees 10

Crossing a Cut and
Respecting Edges
An edge is said to cross a cut
(S, V – S) if one of its endpoints
is in S and the other is in V – S.

S

V – S

S

V – S

A cut is said to respect a set A
of edges if no edge of A
crosses the cut.

© 2020 Shermer Minimum Spanning Trees 11

Light Edges
An edge is said to be a light
edge crossing a cut if its weight
is the minimum of any edge
crossing the cut.

In general, we say that an edge is a light edge
satisfying a given property if its weight is the
minimum of all edges satisfying that property.

S

V – S

14

12

23
17

12

© 2020 Shermer Minimum Spanning Trees 12

Recognizing Safe Edges
Theorem. Let G = (V, E) be a connected graph with
weight function w: E → R. Let A be a subset of E that is
included in some MST for G, let (S, V – S) be any cut of
G that respects A, and let e be a light edge crossing
(S, V – S). Then e is safe for A.

Proof. Let T be a MST that includes A. If T contains the
light edge e, we are done. If not, we shall construct
another MST T' that includes A + e.

Let e = (u, v). This edge, along with edges on the path
p from u to v in T, forms a cycle.

© 2020 Shermer Minimum Spanning Trees 13

Recognizing Safe Edges

But w(T') = w(T) – w(x, y) + w(u, v). Since (u, v) was a
light edge, w(u, v) ≤ w(x, y) and so w(T') ≤ w(T). But
w(T) was minimum, so w(T') = w(T) and T' is another
minimum spanning tree. Thus (u, v) is safe. ■

Since u and v are on opposite
sides of the cut (S, V – S), there
is at least one edge (x, y) on the
path that also crosses the cut.
(x, y) is not in A. Now

T' = T – (x, y) + (u, v)
is another spanning tree of G.

© 2020 Shermer Minimum Spanning Trees 14

Recognizing Safe Edges
Corollary. Let G = (V, E) be a connected graph with
weight function w: E → R. Let A be a subset of E that is
included in some MST for G, and let C = (Vc, Ec) be a
connected component (tree) in GA = (V, A). If e is a light
edge connecting C to some other component of GA, then
e is safe for A.

Proof. The cut
(Vc, V – Vc) respects
A, and e is a light
edge for this cut. ■

C

9

12

8
22

14

© 2020 Shermer Minimum Spanning Trees 15

Kruskal's and Prim's
Algorithms
The two MST algorithms that we will see are elaborations
of the generic MST algorithm. They differ in that they
use different rules to determine a safe edge in line 3 of
GENERIC-MST.

In Kruskal's algorithm, the set A is a forest. The safe
edge e is always a light edge that connects two different
connected components of GA (trees of the forest).

In Prim's algorithm, the set A forms a single tree. The
safe edge e is always a light edge connecting the tree to
a vertex not in the tree.

© 2020 Shermer Minimum Spanning Trees 16

Kruskal's Algorithm
Kruskal's algorithm makes use of a fast way to detect and maintain
connected components of A as edges are added to A. This is the
Union-Find problem, where we start with each vertex in its own
connected component, and we have operations

UNION(u, v) which adds the edge (u, v), connecting the
components for u and v. [I.e. it unions the
sets for u and v together]

FIND-SET(u) which finds the "name" (unique identifier)
of the set containing u.

There is an auxilliary operation

MAKE-SET(u) which creates a new set consisting of just u.

© 2020 Shermer Minimum Spanning Trees 17

Kruskal's Algorithm
MST-KRUSKAL(G, w)

1. A = Ø

2. for each vertex v

3. MAKE-SET(v)

4. sort the edges of E into nondecreasing order by weight w

5. for each edge (u, v) in E, taken in nondecreasing order by w

6. if FIND-SET(u)  FIND-SET(v)

7. A = A + (u, v)

8. UNION(u, v)

9. return A

© 2020 Shermer Minimum Spanning Trees 18

Kruskal's Algorithm Example

© 2020 Shermer Minimum Spanning Trees 19

Kruskal's Algorithm Example

© 2020 Shermer Minimum Spanning Trees 20

Kruskal's Algorithm Example

© 2020 Shermer Minimum Spanning Trees 21

Kruskal's Algorithm Analysis
The running time for Kruskal's algorithm depends on the
implementation of the union-find problem. (The text
calls this the "disjoint-set" problem). The best method
for this problem, for |V| MAKE-SET operations and O(E)
FIND-SET and UNION operations, uses O((V+E)(V))
time, where (n) is a very slowly growing function
known as the inverse of Ackermann's function. We can
simplify this to O(E(V)) because G is connected and
therefore V ≤ E + 1.

© 2020 Shermer Minimum Spanning Trees 22

Aside: Ackermann's Function
(See section 21.4 of text. This is not quite Ackermann's
function, but is very similar.)

Let 𝐴𝑘 𝑗 = ൝
𝑗 + 1 if 𝑘 = 0

𝐴𝑘−1
𝑗+1

(𝑗) if 𝑘 ≥ 1

where 𝐴𝑘−1
𝑗+1

𝑗 = 𝐴𝑘−1(𝐴𝑘−1 𝐴𝑘−1 …𝐴𝑘−1 j)

j+1 times

So 𝐴0 𝑗 = 𝑗 + 1
𝐴1 𝑗 = 𝐴0(𝐴0(𝐴0...(𝐴0 𝑗))) = 𝑗 + (𝑗 + 1)
𝐴2 𝑗 = 𝐴1(𝐴1(𝐴1...(𝐴1 𝑗))) = 2𝑗+1(𝑗 + 1) − 1

© 2020 Shermer Minimum Spanning Trees 23

Aside: Ackermann's Function
𝐴3 1 = 𝐴2 𝐴2 1 = 𝐴2 7 = 28 ∙ 8 − 1 = 211 − 1 = 2047

𝐴4 1 = 𝐴3 𝐴3 1 = 𝐴3 2047 = 𝐴2
2048

2047

= 𝐴2
2047

𝐴2 2047 = 𝐴2
2047

22048 2048 − 1

= 𝐴2
2047

22059 − 1

Now 22059 > (210)205>> (103)205 = 10615

1080 is the estimated number of atoms in the universe.
1018 is the estimated number of seconds until the big crunch.

so if every atom did one calculation per attosecond until the big
crunch, we wouldn't get anywhere near 10615. And we haven't even

looked at the effect of 𝐴2
2047

… ‼!

© 2020 Shermer Minimum Spanning Trees 24

Aside: Inverse Ackermann's
Function
Let (n) be the inverse of An(1):

(n) = min { k : Ak(1) ≥ n}

It is the lowest level k for which Ak(1) is at least n.

𝛼 𝑛 =

0 for 0 ≤ 𝑛 ≤ 2
1 for 𝑛 = 3
2 for 4 ≤ 𝑛 ≤ 7
3 for 8 ≤ 𝑛 ≤ 2047
4 for 2048 ≤ 𝑛 ≤ 𝐴4(1)

So for all practical purposes, (n) ≤ 4.

© 2020 Shermer Minimum Spanning Trees 25

Kruskal's Algorithm Analysis
MST-KRUSKAL(G, w)

1. A = Ø O(1)
2. for each vertex v O(V)
3. MAKE-SET(v) (union-find)
4. sort the E into nondecreasing order ... O(E log E)
5. for each edge (u, v) in E, taken in ... O(E)
6. if FIND-SET(u)  FIND-SET(v) (union-find)
7. A = A + (u, v) O(E)
8. UNION(u, v) (union-find)
9. return A O(1)

O(E log E) + (union-find) =
O(E log V) + O(E(V)) =
O(E log V)

© 2020 Shermer Minimum Spanning Trees 26

Prim's Algorithm
Prim's algorithm has the property that the edges of the set A always
form a single tree. At each step, a light edge is added that connects
A to an isolated vertex of GA= (V, A). By the corollary, this is a safe
edge, and so the algorithm correctly constructs a minimum spanning
tree.

Prim's holds all the vertices that are not in the tree in a min-priority
queue Q. The key for any v in this queue is the minimum weight of
any edge connecting v to the tree. The algorithm assigns a field
parent to every node that it puts in the tree; the parent relationship
implicitly holds the set A: that is,

A = {(v, v.parent) : v  V – {r} – Q}

© 2020 Shermer Minimum Spanning Trees 27

Prim's Algorithm
MST-PRIM(G, w, r) // r is root of tree

1. for each vertex u in G
2. u.key = ∞
3. u.parent = NIL

4. r.key = 0
5. initialize Q with all vertices of G
6. while Q is not empty
7. u = Q.EXTRACT-MIN()
8. for each v in Adj[u]
9. if v  Q and w(u, v) < v.key
10. v.parent = u
11. v.key = w(u, v)

© 2020 Shermer Minimum Spanning Trees 28

Prim's Algorithm Example

© 2020 Shermer Minimum Spanning Trees 29

Prim's Algorithm Example

© 2020 Shermer Minimum Spanning Trees 30

Prim's Algorithm Analysis
MST-PRIM(G, w, r) // r is root of tree

1. for each vertex u in G O(V) iterations
2. u.key = ∞ O(V) total
3. u.parent = NIL O(V) total

4. r.key = 0 O(1)
5. initialize Q with all vertices of G O(V) (heapify)
6. while Q is not empty O(V) iterations
7. u = Q.EXTRACT-MIN() O(V log V) total
8. for each v in Adj[u] O(E) total iterations
9. if v  Q and w(u, v) < v.key O(E) total
10. v.parent = u O(E) total
11. v.key = w(u, v) O(E) total + PQ ops

O(E log V)

O(V log V) + O(E log V)

= O(E log V)

© 2020 Shermer Minimum Spanning Trees 31

Prim's Algorithm Improvement
We may improve the running time of Prim's algorithm with a data
structure known as the Fibonacci Heap. A Fibonacci heap has better
amortized time for its operations than a regular heap. In particular, it
has

O(log V) amortized time for EXTRACT-MIN

O(1) amortized time for DECREASE-KEY (used in line 11).

So the extract-min operations amortize to the same amount, but the
Priority Queue Operations in line 11 take O(E) time total. This gives a
total of O(V log V) + O(E) = O(E + V log V) time.

We have not covered Fibonacci Heaps (and probably won't), but they
are in Chapter 20 of the text.

