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Depth-First Search

Chapter 22
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Depth-First Search
Depth-first search (DFS) is, like breadth-first search (BFS), 
a way of examining every node in a connected graph.  Both 
BFS and DFS have variants that will examine every node in 
an arbitrary (not necessarily connected) graph.

The textbook presents the connected variant of BFS and 
the disconnected version of DFS.  A footnote is provided at 
the start of section 22.3 to try to justify this.  I soundly 
disagree with that footnote and will present the connected 
version of DFS before presenting the disconnected DFS.

Like BFS, DFS starts at a single node and looks for 
neighbors to explore, recursively exploring their neighbors, 
and those neighbors' neighbors, etc.
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Depth-First Search
BFS can optionally label each vertex with its distance from 
the start vertex; DFS cannot.  Both algorithms can also 
optionally construct a tree.

In a (connected-variant) DFS tree, each node v except the 
start node has a predecessor or parent node, which is the 
node whose exploration first discovered v. DFS trees have 
different properties than BFS trees.

DFS and BFS are classic worklist algorithms, where the 
work to be done is kept in a list with items added as they 
are discovered and removed as they are processed.  The 
worklist for DFS is implicitly maintained on the recursion 
stack.
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Depth-First Search
Graph.DFS1(s) // s is start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.predecessor = nil

DFS-VISIT(s)
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Depth-First Search
DFS-VISIT(u)

u.status = DISCOVERED

for each v adjacent to u // process u
if v.status = UNDISCOVERED

v.predecessor = u
DFS-VISIT(v)

u.status = PROCESSED
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Depth-First Search Example
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Depth-First Search Example
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Depth-First Search
The depth-first search from the text will handle a graph 
that is not connected, but it loses the ability to have a 
specific start vertex.

DFS (connected or arbitrary) can optionally compute the 
discovery and finish times of each vertex.  A global counter 
time is maintained, and it is incremented and recorded 
whenever a vertex is discovered or has finished processing.
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Depth-First Search
Graph.DFS2() // no start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.predecessor = nil O(V)

time = 0 O(1)

for each vertex u in G:
if u.status = UNDISCOVERED     O(V) + total time in 

DFS-VISIT(u) DFS-VISIT
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Depth-First Search
DFS-VISIT(u) called at most once per vertex

u.status = DISCOVERED
time = time + 1 O(1)
u.discovered = time O(V)

for each v adjacent to u
if v.status = UNDISCOVERED

v.predecessor = u O(degree(u))
DFS-VISIT(v) O(E)

u.status = PROCESSED
time = time + 1 O(1) 
u.finished = time O(V)

O
(V

 +
 E

)
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The Predecessor Graph
The predecessor graph computed by DFS on a graph G is 
the subgraph with E = {uv | u = v.predecessor}.  This is a 
forest (collection of trees).  If G is connected, the forest 
consists of a single tree.
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Parenthesis Structure
Let us represent the discovery of vertex u with a special 
open-parenthesis (u and the finishing of vertex u with a 
special matching close-parenthesis u).  Then the history of 
all discoveries and finishings in a DFS of a graph makes a 
well-formed nested-parenthesis expression.

(a (d (c c) (f (g (h (i i) h) g) f) (e (b b) e) d) a)

a

c

b

ed

g

f

h

i
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Parenthesis Theorem
Theorem.  In any DFS of a (directed or undirected) graph 
G = (V, E), for any two vertices u and v, exactly one of the 
following holds:

• the intervals [u.discovered, u.finished] and [v.discovered, v.finished] 
are entirely disjoint, and neither u nor v is a descendant of the other 
in the depth-first forest,

• the interval [u.discovered, u.finished] is contained entirely within 
the interval [v.discovered, v.finished] and u is a descendant of v in 
the depth-first forest, or

• the interval [v.discovered, v.finished] is contained entirely within
the interval [u.discovered, u.finished] and v is a descendant of u in 
the depth-first forest.
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Parenthesis Theorem Proof
Proof.  Consider the case in which u.discovered < 
v.discovered.  We examine subcases based on whether 
v.discovered < u.finished.

If this condition is true, then v was discovered while u was still in the 
DISCOVERED state.  This implies that v is a descendant of u.  Since v 
was discovered later than u, all of v's outgoing edges are explored, and 
v is finished, before the search returns to and finishes u.  Thus the 
interval [v.discovered, v.finished] is contained within the interval 
[u.discovered, u.finished].

If the condition is false, u.finished < v.discovered, and since 
v.discovered < v.finished, the intervals are disjoint.  Because they are 
disjoint, neither u nor v was discovered when the other was still in the 
DISCOVERED state, so neither is a descendant of the other.
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Parenthesis Theorem Proof
The case in which v.discovered < u.discovered is 
symmetric. ■

Corollary.  Vertex v is a proper descendent of vertex u in 
the depth-first forest for a (directed or undirected) graph G 
if and only if

u.discovered < v.discovered < v.finished < u.finished.
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Undiscovered Path Theorem
Theorem.  In a depth-first forest of a (directed or 
undirected) graph G = (V, E), vertex v is a descendant of 
vertex u if and only if at the time the search discovers u, 
vertex v can be reached from u along a path consisting 
entirely of vertices with UNDISCOVERED status.

Proof. If v is a descendant of u, let w be any vertex on 
the path between u and v in the DFS tree; w is thus a 
descendant of u.  By the previous corollary, u.discovered < 
w.discovered, so w is UNDISCOVERED at the time 
u.discovered.

Suppose v can be reached from u along a path of 
UNDISCOVERED vertices at time u.discovered, but v does 
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Undiscovered Path Theorem
not become a descendant of u in the DFS tree. (Let v be 
the closest such vertex to u.) All other vertices from u to v 
along the UNDISCOVERED path become descendants of u.  
Let w be the predecessor of v in this path.  By the 
parenthesis corollary, w.finished ≤ u.finished.  Now, 
u.discovered < v.discovered < w.finished ≤ u.finished.  So 
by the parenthesis theorem, [v.discovered, v.finished] is 
contained entirely within [u.discovered, u.finished] and v 
must be a descendant of u. ■
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Classification of edges
DFS can be used to classify the edges of a graph or 
directed graph.  We divide the edges into four classes:

1. Tree Edges are edges in the DFS forest (predecessor 
graph).

2. Back Edges are those edges (u, v) connecting a vertex 
u to an ancestor v in a DFS tree.  Self-loops (edges
(u, u) ) are considered to be back edges.

3. Forward Edges are those nontree edges connecting a 
vertex u to a descendent v in a DFS tree.

4. Cross edges are all other edges.  
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Classification of edges

cross

forward

back

tree
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Classification of edges
The DFS algorithm itself can classify the edges as it 
operates.  The key is to classify an edge (u, v) when it is 
first explored.

1. If v is UNDISCOVERED, (u, v) is a tree edge.
2. If v is DISCOVERED, (u, v) is a back edge.
3. If v is PROCESSED, (u, v) is a forward or cross edge.

3a.  If u.discovered < v.discovered, 
(u, v) is a forward edge.

3b.  If u.discovered > v.discovered,
(u, v) is a cross edge.
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Classification of edges
Theorem. In a DFS of a undirected graph G, every edge 
of G is either a tree edge or a back edge.

Proof.  Let (u, v) be any edge of G with u discovered 
before v.  Then, v must be discovered and finished before 
u finishes. If (u, v) is explored first from u, then (u, v) 
becomes a tree edge.  If (u, v) is explored first from v, 
then (since u is already DISCOVERED), (u, v) becomes a 
back edge. ■
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Breadth-first Search for 
Arbitrary Graphs
Graph.BFS2() // no start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.distance = ∞
u.predecessor = nil

for each vertex s in G:
if s.status = UNDISCOVERED

s.status = DISCOVERED
s.distance = 0
s.predecessor = nil
BFS-VISIT(s)
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Breadth-first Search for 
Arbitrary Graphs
BFS-VISIT(s)

Q = new Queue
Q.enqueue(s)
while !Q.isEmpty() 

u = Q.dequeue()
for each v adjacent to u

if v.status = UNDISCOVERED
v.status = DISCOVERED
v.distance = u.distance + 1
v.predecessor = u
Q.enqueue(v)

u.status = PROCESSED


