
© 2020 Shermer Depth-First Search 1

Depth-First Search

Chapter 22

© 2020 Shermer Depth-First Search 2

Depth-First Search
Depth-first search (DFS) is, like breadth-first search (BFS),
a way of examining every node in a connected graph. Both
BFS and DFS have variants that will examine every node in
an arbitrary (not necessarily connected) graph.

The textbook presents the connected variant of BFS and
the disconnected version of DFS. A footnote is provided at
the start of section 22.3 to try to justify this. I soundly
disagree with that footnote and will present the connected
version of DFS before presenting the disconnected DFS.

Like BFS, DFS starts at a single node and looks for
neighbors to explore, recursively exploring their neighbors,
and those neighbors' neighbors, etc.

© 2020 Shermer Depth-First Search 3

Depth-First Search
BFS can optionally label each vertex with its distance from
the start vertex; DFS cannot. Both algorithms can also
optionally construct a tree.

In a (connected-variant) DFS tree, each node v except the
start node has a predecessor or parent node, which is the
node whose exploration first discovered v. DFS trees have
different properties than BFS trees.

DFS and BFS are classic worklist algorithms, where the
work to be done is kept in a list with items added as they
are discovered and removed as they are processed. The
worklist for DFS is implicitly maintained on the recursion
stack.

© 2020 Shermer Depth-First Search 4

Depth-First Search
Graph.DFS1(s) // s is start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.predecessor = nil

DFS-VISIT(s)

© 2020 Shermer Depth-First Search 5

Depth-First Search
DFS-VISIT(u)

u.status = DISCOVERED

for each v adjacent to u // process u
if v.status = UNDISCOVERED

v.predecessor = u
DFS-VISIT(v)

u.status = PROCESSED

© 2020 Shermer Depth-First Search 6

Depth-First Search Example
r s t u

v w x y(a)

r s t u

v w x y(b)

r s t u

v w x y(c)

r s t u

v w x y(d)

r s t u

v w x y(e)

r s t u

v w x y(f)

r s t u

v w x y(g)

r s t u

v w x y(h)

r s t u

v w x y(i)

© 2020 Shermer Depth-First Search 7

Depth-First Search Example
r s t u

v w x y(j)

r s t u

v w x y(k)

r s t u

v w x y(l)

r s t u

v w x y(m)

r s t u

v w x y(n)

r s t u

v w x y(o)

r s t u

v w x y(p)

© 2020 Shermer Depth-First Search 8

Depth-First Search
The depth-first search from the text will handle a graph
that is not connected, but it loses the ability to have a
specific start vertex.

DFS (connected or arbitrary) can optionally compute the
discovery and finish times of each vertex. A global counter
time is maintained, and it is incremented and recorded
whenever a vertex is discovered or has finished processing.

© 2020 Shermer Depth-First Search 9

Depth-First Search
Graph.DFS2() // no start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.predecessor = nil O(V)

time = 0 O(1)

for each vertex u in G:
if u.status = UNDISCOVERED O(V) + total time in

DFS-VISIT(u) DFS-VISIT

© 2020 Shermer Depth-First Search 10

Depth-First Search
DFS-VISIT(u) called at most once per vertex

u.status = DISCOVERED
time = time + 1 O(1)
u.discovered = time O(V)

for each v adjacent to u
if v.status = UNDISCOVERED

v.predecessor = u O(degree(u))
DFS-VISIT(v) O(E)

u.status = PROCESSED
time = time + 1 O(1)
u.finished = time O(V)

O
(V

 +
 E

)

© 2020 Shermer Depth-First Search 11

The Predecessor Graph
The predecessor graph computed by DFS on a graph G is
the subgraph with E = {uv | u = v.predecessor}. This is a
forest (collection of trees). If G is connected, the forest
consists of a single tree.

© 2020 Shermer Depth-First Search 12

Parenthesis Structure
Let us represent the discovery of vertex u with a special
open-parenthesis (u and the finishing of vertex u with a
special matching close-parenthesis u). Then the history of
all discoveries and finishings in a DFS of a graph makes a
well-formed nested-parenthesis expression.

(a (d (c c) (f (g (h (i i) h) g) f) (e (b b) e) d) a)

a

c

b

ed

g

f

h

i

© 2020 Shermer Depth-First Search 13

Parenthesis Theorem
Theorem. In any DFS of a (directed or undirected) graph
G = (V, E), for any two vertices u and v, exactly one of the
following holds:

• the intervals [u.discovered, u.finished] and [v.discovered, v.finished]
are entirely disjoint, and neither u nor v is a descendant of the other
in the depth-first forest,

• the interval [u.discovered, u.finished] is contained entirely within
the interval [v.discovered, v.finished] and u is a descendant of v in
the depth-first forest, or

• the interval [v.discovered, v.finished] is contained entirely within
the interval [u.discovered, u.finished] and v is a descendant of u in
the depth-first forest.

© 2020 Shermer Depth-First Search 14

Parenthesis Theorem Proof
Proof. Consider the case in which u.discovered <
v.discovered. We examine subcases based on whether
v.discovered < u.finished.

If this condition is true, then v was discovered while u was still in the
DISCOVERED state. This implies that v is a descendant of u. Since v
was discovered later than u, all of v's outgoing edges are explored, and
v is finished, before the search returns to and finishes u. Thus the
interval [v.discovered, v.finished] is contained within the interval
[u.discovered, u.finished].

If the condition is false, u.finished < v.discovered, and since
v.discovered < v.finished, the intervals are disjoint. Because they are
disjoint, neither u nor v was discovered when the other was still in the
DISCOVERED state, so neither is a descendant of the other.

© 2020 Shermer Depth-First Search 15

Parenthesis Theorem Proof
The case in which v.discovered < u.discovered is
symmetric. ■

Corollary. Vertex v is a proper descendent of vertex u in
the depth-first forest for a (directed or undirected) graph G
if and only if

u.discovered < v.discovered < v.finished < u.finished.

© 2020 Shermer Depth-First Search 16

Undiscovered Path Theorem
Theorem. In a depth-first forest of a (directed or
undirected) graph G = (V, E), vertex v is a descendant of
vertex u if and only if at the time the search discovers u,
vertex v can be reached from u along a path consisting
entirely of vertices with UNDISCOVERED status.

Proof. If v is a descendant of u, let w be any vertex on
the path between u and v in the DFS tree; w is thus a
descendant of u. By the previous corollary, u.discovered <
w.discovered, so w is UNDISCOVERED at the time
u.discovered.

Suppose v can be reached from u along a path of
UNDISCOVERED vertices at time u.discovered, but v does

© 2020 Shermer Depth-First Search 17

Undiscovered Path Theorem
not become a descendant of u in the DFS tree. (Let v be
the closest such vertex to u.) All other vertices from u to v
along the UNDISCOVERED path become descendants of u.
Let w be the predecessor of v in this path. By the
parenthesis corollary, w.finished ≤ u.finished. Now,
u.discovered < v.discovered < w.finished ≤ u.finished. So
by the parenthesis theorem, [v.discovered, v.finished] is
contained entirely within [u.discovered, u.finished] and v
must be a descendant of u. ■

© 2020 Shermer Depth-First Search 18

Classification of edges
DFS can be used to classify the edges of a graph or
directed graph. We divide the edges into four classes:

1. Tree Edges are edges in the DFS forest (predecessor
graph).

2. Back Edges are those edges (u, v) connecting a vertex
u to an ancestor v in a DFS tree. Self-loops (edges
(u, u)) are considered to be back edges.

3. Forward Edges are those nontree edges connecting a
vertex u to a descendent v in a DFS tree.

4. Cross edges are all other edges.

© 2020 Shermer Depth-First Search 19

Classification of edges

cross

forward

back

tree

© 2020 Shermer Depth-First Search 20

Classification of edges
The DFS algorithm itself can classify the edges as it
operates. The key is to classify an edge (u, v) when it is
first explored.

1. If v is UNDISCOVERED, (u, v) is a tree edge.
2. If v is DISCOVERED, (u, v) is a back edge.
3. If v is PROCESSED, (u, v) is a forward or cross edge.

3a. If u.discovered < v.discovered,
(u, v) is a forward edge.

3b. If u.discovered > v.discovered,
(u, v) is a cross edge.

© 2020 Shermer Depth-First Search 21

Classification of edges
Theorem. In a DFS of a undirected graph G, every edge
of G is either a tree edge or a back edge.

Proof. Let (u, v) be any edge of G with u discovered
before v. Then, v must be discovered and finished before
u finishes. If (u, v) is explored first from u, then (u, v)
becomes a tree edge. If (u, v) is explored first from v,
then (since u is already DISCOVERED), (u, v) becomes a
back edge. ■

© 2020 Shermer Depth-First Search 22

Breadth-first Search for
Arbitrary Graphs
Graph.BFS2() // no start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.distance = ∞
u.predecessor = nil

for each vertex s in G:
if s.status = UNDISCOVERED

s.status = DISCOVERED
s.distance = 0
s.predecessor = nil
BFS-VISIT(s)

© 2020 Shermer Depth-First Search 23

Breadth-first Search for
Arbitrary Graphs
BFS-VISIT(s)

Q = new Queue
Q.enqueue(s)
while !Q.isEmpty()

u = Q.dequeue()
for each v adjacent to u

if v.status = UNDISCOVERED
v.status = DISCOVERED
v.distance = u.distance + 1
v.predecessor = u
Q.enqueue(v)

u.status = PROCESSED

