
© 2020 Shermer Graphs 1

Graphs and
Breadth-First Search

Chapter 22

© 2020 Shermer Graphs 2

Graphs
A graph G is a pair (V, E) where V is an arbitrary set and E
is a set of 2-element subsets of V.

The elements of V are called the vertices or nodes of the
graph. The elements of E are called the edges or arcs of
the graph.

A graph can be visualized by drawing elements of V as
dots, and elements of E as line segments between dots.

a

b

c

d

e V = {a, b, c, d, e}
E = {ac, cb, be, ea}

© 2020 Shermer Graphs 3

Digraphs
A directed graph or digraph G is a pair (V, E) where V is an
arbitrary and E is a subset of V × V.

The difference from a graph is that digraph edges are
directed from one vertex to another.

A digraph can be visualized by drawing elements of V as
dots, and elements of E as arrows between dots.

a

b

c

d

e V = {a, b, c, d, e}
E = {ac, ca, cb, dc, eb}

© 2020 Shermer Graphs 4

Applications
Graphs and digraphs have a multitude of applications in
computing.

Consider a graph (V, E) where V = some
processors and E = physical connections
between the processors. This is a
network interconnection graph.

Or a graph (V, E) where V = the
variables in a program, and E contains
an edge v1v2 if the two variables v1 and v2

must be in memory at the same time. This
is called a conflict graph.

result

count

i

j

max

© 2020 Shermer Graphs 5

Applications
Consider a digraph (V, E) where V =
courses in university and edge ab is
in E if a is a prerequisite of b. This
is the prerequisite digraph.

Or a digraph (V, E) where V = the
classes in an object-oriented program,
and E contains an edge c1c2 if the class
c1 is a subclass of class c2. This is
called a class hierarchy.

object

list set

hash
set

linked list

array list

CMPT
225

CMPT
127

CMPT
307

MACM
101

MACM
201

MATH
232

© 2020 Shermer Graphs 6

Representations of Graphs
There are three major representations of graphs and
digraphs in widespread use.

The first of these is the adjacency-list representation. Here
each vertex stores a list of adjacent vertices.

The second of these is the adjacency-matrix
representation. Here a |V| × |V| matrix M, where an entry
M(i, j) stores 0 if there is no edge from i to j, or 1 if there is
an edge from i to j.

Adjacency-list is excellent for sparse graphs and okay for
dense ones. Adjacency-matrix is good for dense graphs.

© 2020 Shermer Graphs 7

Representations of Graphs

© 2020 Shermer Graphs 8

Representations of Graphs
The third representation is the edge-list representation. Here each
vertex stores a list of adjacent edges.

The edge-list representation is very similar to the adjacency-list
representation. It is excellent for sparse graphs, and for when edges
have data associated with them. It is the most frequently found
object-oriented representation.

An edge-list representation typically has an object for the graph that
contains a sequence (list or array) of vertex object references. Each
vertex object contains a list of edge object references for the edges it
is a part of. Each edge object contains references to the two vertex
objects for the vertices that are its endpoints.

Theoretically, adjacency-list and edge-list representations are nearly
equivalent, so the text does not go into edge-list representations.

© 2020 Shermer Graphs 9

Edge-List Representation

1

2

3

4

5

Graph object:
sequence of
vertex references

Vertex objects:
data and a list
of edges

Edge objects:
data and two
vertex references

...

© 2020 Shermer Graphs 10

Breadth-First Search
Breadth-first search (BFS) is a way of examining every
node in a connected graph. A graph is connected if every
pair of vertices is joined by a path of one or more edges.

BFS starts at a single node and looks for neighbors to
explore, recursively exploring their neighbors, and those
neighbors' neighbors, etc.

connected not connected

© 2020 Shermer Graphs 11

Breadth-First Search
Breadth-first search can optionally label each vertex with
its distance from the start vertex. It can also optionally
construct a tree, known as a Breadth-First Search Tree.

In a BFS tree, each node v except the start node has a
predecessor or parent node, which is the node whose
exploration first discovered v. A BFS tree is a tree of
minimum height contained in the graph that is rooted at
the start node and contains all of the nodes of the graph.

BFS is a classic worklist algorithm, where the work to be
done is kept in a list (or other data structure), with items
added as they are discovered and removed as they are
processed.

© 2020 Shermer Graphs 12

Breadth-First Search
Graph.BFS(s) // s is start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.distance = ∞
u.predecessor = nil

s.status = DISCOVERED
s.distance = 0
s.predecessor = nil

Q = new Queue // Q is "worklist"
Q.enqueue(s)
...

© 2020 Shermer Graphs 13

Breadth-First Search
while !Q.isEmpty()

u = Q.dequeue()
for each v adjacent to u // process u

if v.status = UNDISCOVERED
v.status = DISCOVERED
v.distance = u.distance + 1
v.predecessor = u
Q.enqueue(v)

u.status = PROCESSED

© 2020 Shermer Graphs 14

Breadth-First Search Example

© 2020 Shermer Graphs 15

Breadth-First Search Example

Invariant:

At "while !Q.isempty" the queue contains all vertices
with status = DISCOVERED.

© 2020 Shermer Graphs 16

Breadth-First Search Analysis
Vertices are marked UNDISCOVERED only at initialization.

The "if v.status is UNDISCOVERED" test ensures that each
vertex is enqueued at most once, and therefore dequeued
at most once. Each of these operations takes constant
time, so it's O(V) for the queue operations.

The adjacency list of each vertex is scanned exactly once,
when the vertex is dequeued. Thus the time spent
scanning adjacency lists is at most O(E).

Initialization costs O(V), so the time for BFS is O(V+E).
This is linear in the size of the adjacency list representation.

© 2020 Shermer Graphs 17

Distance and Shortest Paths
Let the shortest-path distance (or simply distance) δ(s, v)
from vertex s to vertex v be the minimum number of edges
in any path from s to v. If there is no path from s to v,
then δ(s, v) = ∞.

A path of length δ(s, v) from s to v is called a shortest path
from s to v.

s

v

t

uw δ(s, v) = 3

stuv is a shortest path
swuv is also a shortest path

© 2020 Shermer Graphs 18

Lemma on Shortest Paths
Lemma. Let G = (V, E) be a directed or undirected graph.
Let s  V be an arbitrary vertex. Then, for any edge
(u, v)  E, δ(s, v) ≤ δ(s, u) + 1.

Proof. If u is reachable from s, then a shortest path from
s to u followed by the edge from u to v is a path from s to
v and has length δ(s, u) + 1. If u is not reachable from s,
then δ(s, u) = ∞ and the result holds. ■

s

vu

δ(s, u)

© 2020 Shermer Graphs 19

BFS distance lemma
Lemma. Let G = (V, E) be a directed or undirected graph.
Suppose BFS is run on G from a given source vertex s.
Upon termination, for each v  V, the value v.distance
computed by BFS satisfies v.distance ≥ δ(s, v).

Proof. By induction on the number of ENQUEUE
operations. The inductive hypothesis (IH) is that
v.distance ≥ δ(s, v) for all v  V.

The basis is when s is first ENQUEUEd. The IH holds here
because s.distance = 0 = δ(s, s) and for all other vertices
v, v.distance = ∞ ≥ δ(s, v).

© 2020 Shermer Graphs 20

BFS distance lemma
For the inductive step, let v be an UNDISCOVERED vertex
that is discovered during the loop for vertex u's neighbors.

v.distance = u.distance + 1 by the assigment in the if
≥ δ(s, u) + 1 by the IH
≥ δ(s, v) by the previous lemma

Vertex v is then enqueued, and it is never enqueued again
because its status has changed to DISCOVERED and never
changed back to UNDISCOVERED. So v.distance never
changes again, and the IH is maintained. ■

© 2020 Shermer Graphs 21

Queue distances lemma
Lemma. Suppose that during the execution of BFS on
graph G = (V, E), the queue Q contains the vertices
<v1, v2, ... vr>, where v1 is the head of the queue and vr

the tail. Then
vr.distance ≤ v1.distance + 1, and
vi.distance ≤ vi+1.distance for i = 1, 2, ... , r-1.

Proof. By induction on the number of queue operations.
The basis is when the queue contains only s, when the
lemma trivially holds (r = 1).

If v1 is dequeued, then v2 becomes the new head. By
induction, vr.distance ≤ v1.distance + 1, which is ≤
v2.distance + 1.

© 2020 Shermer Graphs 22

Queue distances lemma
All other inequalities are unaffected, so the lemma holds
after a dequeue.

If some vertex v is enqueued while scanning vertex u's
neighbors, v becomes vr+1. u was dequeued before
scanning commenced, and it satisfied

u.distance ≤ v1.distance.

So vr+1.distance = v.distance = u.distance + 1
≤ v1.distance + 1

From the IH we have vr.distance ≤ u.distance + 1, and so
vr.distance ≤ vr+1.distance. Again, the remaining
inequalities are unaffected and so the lemma holds after v
is enqueued. ■

© 2020 Shermer Graphs 23

Queue distances corollary
Corollary. Suppose that vertices vi and vj are enqueued
during the execution of BFS, and that vi is enqueued before
vj. Then

vi.distance ≤ vj.distance

at the time when vj is enqueued.

Proof. Apply previous lemma and note that each vertex
receives a finite distance value at most once during the
course of the BFS. ■

© 2020 Shermer Graphs 24

Correctness of BFS
Theorem. Let BFS be executed on G = (V, E) from source
vertex s. Then BFS discovers every vertex that is
reachable from s, and upon termination,
v.distance = δ(s, v) for all vertices v  V. Furthermore, for
any vertex v  s that is reachable from s, one of the
shortest paths from s to v is a shortest path from s to
v.predecessor followed by the edge (v.predecessor, v).

Proof. To prove v.distance = δ(s, v) we use proof by
contradiction. So assume that some vertex gets a distance
value that is not equal to its shortest path distance. Let v
be a vertex with minimum δ(s, v) that receives such an
incorrect value. Trivially, v  s.

© 2020 Shermer Graphs 25

Correctness of BFS
By the BFS distance lemma, v.distance ≥ δ(s, v), so it must
be that v.distance > δ(s, v). Let u be the vertex
immediately preceding v on a shortest path from s to v.
Then δ(s, v) = δ(s, u) + 1. Now u.distance = δ(s, u) and
v.distance > δ(s, v) = δ(s, u) + 1 = u.distance +1. (*)

Consider v.status when BFS dequeues u. If v.status is
UNDISCOVERED, then in processing u we set v to
DISCOVERED and v.distance to u.distance +1,
contradicting (*). If v.status is PROCESSED, then it was
already removed from the queue and has v.distance ≤
u.distance, by the Queue Distances Corollary. This again
contradicts (*). If v.status is DISCOVERED, then it was in

© 2020 Shermer Graphs 26

Correctness of BFS
the queue when u was dequeued, and the Queue Distances
Lemma tells us v.distance ≤ u.distance +1, again
contradicting (*).

As every case has led to a contradiction, we have that
v.distance = δ(s, v) for all vertices v  V. All vertices
reachable from s must be discovered, as otherwise their
distance value would be infinite. Next, observe that if
v.predecessor = u, then v.distance = u.distance + 1.
Therefore we obtain a shortest path from s to v by taking a
shortest path from s to u followed by the edge uv. ■

Be sure to read the end of section 22.2 on BFS Trees.

