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Graphs and
Breadth-First Search

Chapter 22
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Graphs
A graph G is a pair (V, E) where V is an arbitrary set and E 
is a set of 2-element subsets of V.

The elements of V are called the vertices or nodes of the 
graph.   The elements of E are called the edges or arcs of 
the graph.

A graph can be visualized by drawing elements of V as 
dots, and elements of E as line segments between dots.
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e V = {a, b, c, d, e}
E = {ac, cb, be, ea}
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Digraphs
A directed graph or digraph G is a pair (V, E) where V is an 
arbitrary and E is a subset of V × V.

The difference from a graph is that digraph edges are 
directed from one vertex to another.

A digraph can be visualized by drawing elements of V as 
dots, and elements of E as arrows between dots.
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e V = {a, b, c, d, e}
E = {ac, ca, cb, dc, eb}
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Applications
Graphs and digraphs have a multitude of applications in 
computing.

Consider a graph (V, E) where V = some 
processors and E = physical connections 
between the processors.  This is a 
network interconnection graph.

Or a graph (V, E) where V = the
variables in a program, and E contains
an edge v1v2 if the two variables v1 and v2

must be in memory at the same time.  This
is called a conflict graph.
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Applications
Consider a digraph (V, E) where V = 
courses in university and edge ab is
in E if a is a prerequisite of b.  This
is the prerequisite digraph. 

Or a digraph (V, E) where V = the
classes in an object-oriented program,
and E contains an edge c1c2 if the class
c1 is a subclass of class c2.  This is
called a class hierarchy.
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Representations of Graphs
There are three major representations of graphs and 
digraphs in widespread use.

The first of these is the adjacency-list representation.  Here 
each vertex stores a list of adjacent vertices.

The second of these is the adjacency-matrix 
representation.  Here a |V| × |V| matrix M, where an entry 
M(i, j) stores 0 if there is no edge from i to j, or 1 if there is 
an edge from i to j.

Adjacency-list is excellent for sparse graphs and okay for 
dense ones.  Adjacency-matrix is good for dense graphs.
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Representations of Graphs
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Representations of Graphs
The third representation is the edge-list representation.  Here each 
vertex stores a list of adjacent edges.

The edge-list representation is very similar to the adjacency-list 
representation.  It is excellent for sparse graphs, and for when edges 
have data associated with them.   It is the most frequently found 
object-oriented representation.

An edge-list representation typically has an object for the graph that 
contains a sequence (list or array) of vertex object references.  Each 
vertex object contains a list of edge object references for the edges it 
is a part of.  Each edge object contains references to the two vertex 
objects for the vertices that are its endpoints.

Theoretically, adjacency-list and edge-list representations are nearly 
equivalent, so the text does not go into edge-list representations.
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Edge-List Representation
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Graph object: 
sequence of 
vertex references

Vertex objects: 
data     and a list 
of edges

Edge objects: 
data     and two 
vertex references

...
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Breadth-First Search
Breadth-first search (BFS) is a way of examining every 
node in a connected graph.  A graph is connected if every 
pair of vertices is joined by a path of one or more edges.

BFS starts at a single node and looks for neighbors to 
explore, recursively exploring their neighbors, and those 
neighbors' neighbors, etc.

connected not connected
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Breadth-First Search
Breadth-first search can optionally label each vertex with 
its distance from the start vertex.  It can also optionally 
construct a tree, known as a Breadth-First Search Tree.

In a BFS tree, each node v except the start node has a 
predecessor or parent node, which is the node whose 
exploration first discovered v.  A BFS tree is a tree of 
minimum height contained in the graph that is rooted at 
the start node and contains all of the nodes of the graph.

BFS is a classic worklist algorithm, where the work to be 
done is kept in a list (or other data structure), with items 
added as they are discovered and removed as they are 
processed.
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Breadth-First Search
Graph.BFS(s) // s is start vertex

for each vertex u in G: // G is "this"
u.status = UNDISCOVERED
u.distance = ∞
u.predecessor = nil

s.status = DISCOVERED
s.distance = 0
s.predecessor = nil

Q = new Queue // Q is "worklist"
Q.enqueue(s)
...
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Breadth-First Search
while !Q.isEmpty() 

u = Q.dequeue()
for each v adjacent to u // process u

if v.status = UNDISCOVERED
v.status = DISCOVERED
v.distance = u.distance + 1
v.predecessor = u
Q.enqueue(v)

u.status = PROCESSED
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Breadth-First Search Example
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Breadth-First Search Example

Invariant:  

At "while !Q.isempty" the queue contains all vertices 
with status = DISCOVERED.
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Breadth-First Search Analysis
Vertices are marked UNDISCOVERED only at initialization.

The "if v.status is UNDISCOVERED" test ensures that each 
vertex is enqueued at most once, and therefore dequeued 
at most once.  Each of these operations takes constant 
time, so it's O(V) for the queue operations.

The adjacency list of each vertex is scanned exactly once, 
when the vertex is dequeued.  Thus the time spent 
scanning adjacency lists is at most O(E).

Initialization costs O(V), so the time for BFS is O(V+E).  
This is linear in the size of the adjacency list representation.
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Distance and Shortest Paths
Let the shortest-path distance (or simply distance) δ(s, v) 
from vertex s to vertex v be the minimum number of edges 
in any path from s to v. If there is no path from s to v, 
then δ(s, v) = ∞.

A path of length δ(s, v) from s to v is called a shortest path 
from s to v.

s

v

t

uw δ(s, v) = 3

stuv is a shortest path
swuv is also a shortest path
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Lemma on Shortest Paths
Lemma.  Let G = (V, E) be a directed or undirected graph.  
Let s  V be an arbitrary vertex.  Then, for any edge
(u, v)  E, δ(s, v) ≤ δ(s, u) + 1.

Proof.  If u is reachable from s, then a shortest path from 
s to u followed by the edge from u to v is a path from s to 
v and has length δ(s, u) + 1.  If u is not reachable from s, 
then δ(s, u) = ∞ and the result holds. ■

s

vu

δ(s, u)



© 2020 Shermer Graphs 19

BFS distance lemma
Lemma.  Let G = (V, E) be a directed or undirected graph.  
Suppose BFS is run on G from a given source vertex s.  
Upon termination, for each v  V, the value v.distance 
computed by BFS satisfies v.distance ≥ δ(s, v).

Proof.  By induction on the number of ENQUEUE 
operations.  The inductive hypothesis (IH) is that 
v.distance ≥ δ(s, v) for all v  V.  

The basis is when s is first ENQUEUEd.  The IH holds here 
because s.distance = 0 = δ(s, s) and for all other vertices 
v, v.distance = ∞ ≥ δ(s, v).
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BFS distance lemma
For the inductive step, let v be an UNDISCOVERED vertex 
that is discovered during the loop for vertex u's neighbors. 

v.distance = u.distance + 1    by the assigment in the if
≥ δ(s, u) + 1    by the IH
≥ δ(s, v) by the previous lemma

Vertex v is then enqueued, and it is never enqueued again 
because its status has changed to DISCOVERED and never 
changed back to UNDISCOVERED.  So v.distance never 
changes again, and the IH is maintained. ■
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Queue distances lemma
Lemma.  Suppose that during the execution of BFS on 
graph G = (V, E), the queue Q contains the vertices
<v1, v2, ... vr>, where v1 is the head of the queue and vr

the tail.  Then
vr.distance ≤ v1.distance + 1, and
vi.distance ≤ vi+1.distance      for i = 1, 2, ... , r-1.

Proof.  By induction on the number of queue operations.  
The basis is when the queue contains only s, when the 
lemma trivially holds (r = 1).

If v1 is dequeued, then v2 becomes the new head.  By 
induction, vr.distance ≤ v1.distance + 1, which is ≤ 
v2.distance + 1.
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Queue distances lemma
All other inequalities are unaffected, so the lemma holds 
after a dequeue.

If some vertex v is enqueued while scanning vertex u's 
neighbors, v becomes vr+1.  u was dequeued before 
scanning commenced, and it satisfied 

u.distance ≤ v1.distance.

So vr+1.distance = v.distance = u.distance + 1
≤ v1.distance + 1

From the IH we have vr.distance ≤ u.distance + 1, and so
vr.distance ≤ vr+1.distance.  Again, the remaining 
inequalities are unaffected and so the lemma holds after v 
is enqueued. ■
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Queue distances corollary
Corollary.  Suppose that vertices vi and vj are enqueued 
during the execution of BFS, and that vi is enqueued before 
vj.   Then

vi.distance ≤ vj.distance

at the time when vj is enqueued.

Proof.  Apply previous lemma and note that each vertex 
receives a finite distance value at most once during the 
course of the BFS. ■
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Correctness of BFS
Theorem.  Let BFS be executed on G = (V, E) from source 
vertex s.  Then BFS discovers every vertex that is 
reachable from s, and upon termination, 
v.distance = δ(s, v) for all vertices v  V.  Furthermore, for 
any vertex v  s that is reachable from s, one of the 
shortest paths from s to v is a shortest path from s to 
v.predecessor followed by the edge (v.predecessor, v).

Proof.  To prove v.distance = δ(s, v) we use proof by 
contradiction. So assume that some vertex gets a distance 
value that is not equal to its shortest path distance.   Let v 
be a vertex with minimum δ(s, v) that receives such an 
incorrect value.  Trivially, v  s.
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Correctness of BFS
By the BFS distance lemma, v.distance ≥ δ(s, v), so it must 
be that v.distance > δ(s, v).  Let u be the vertex 
immediately preceding v on a shortest path from s to v.  
Then δ(s, v) = δ(s, u) + 1.  Now u.distance = δ(s, u) and 
v.distance > δ(s, v) = δ(s, u) + 1 = u.distance +1. (*)

Consider v.status when BFS dequeues u. If v.status is 
UNDISCOVERED, then in processing u we set v to 
DISCOVERED and v.distance to u.distance +1, 
contradicting (*).  If v.status is PROCESSED, then it was 
already removed from the queue and has v.distance ≤ 
u.distance, by the Queue Distances Corollary.  This again 
contradicts (*). If v.status is DISCOVERED, then it was in
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Correctness of BFS
the queue when u was dequeued, and the Queue Distances 
Lemma tells us v.distance ≤ u.distance +1, again 
contradicting (*).

As every case has led to a contradiction, we have that 
v.distance = δ(s, v) for all vertices v  V.   All vertices 
reachable from s must be discovered, as otherwise their 
distance value would be infinite.  Next, observe that if 
v.predecessor = u, then v.distance = u.distance + 1.  
Therefore we obtain a shortest path from s to v by taking a 
shortest path from s to u followed by the edge uv.      ■

Be sure to read the end of section 22.2 on BFS Trees.


