
© 2020 Shermer Amortized Analysis 1

Amortized Analysis

Chapter 17

© 2020 Shermer Amortized Analysis 2

Amortized analysis
Amortized analysis is a method of algorithm analysis where the
time to perform a sequence of operations is averaged over all of
the operations performed.

It can show that the average cost of an operation is small even
though a single operation within the sequence might be
expensive.

Amortized analysis guarantees the average performance of each
operation in the worst case.

Average-case analysis studies the worst performance in the
average case.

Average-case analysis involves input distributions and
probabilities; amortized analysis does not.

© 2020 Shermer Amortized Analysis 3

Amortized analysis

We study three types of amortized analysis:

1. The aggregate method. Here we determine the total cost T(n) of n
operations and conclude that the average cost is T(n) / n.

2. The accounting method. Here we overcharge some operations
early in the sequence, storing the overcharge as “prepaid credit”
on specific data items. This credit is used on later operations to
make them appear to cost less.

3. The potential method. Like the accounting method except that the
prepaid credit is stored as a “potential energy” of the data
structure as a whole.

© 2020 Shermer Amortized Analysis 4

Aggregate method

Show that the total worst-case cost of n operations is T(n). Conclude
that the amortized cost, or the average worst-case cost, is T(n) / n.

As an example, we study some stack operations:

S.push(x) pushes object x onto stack S

S.pop() pops the top of stack S and returns the
popped object.

S.multipop(k) removes the top k objects of stack S or
pops the entire stack if it contains fewer
than k objects.

© 2020 Shermer Amortized Analysis 5

Stack operations

S.push(x) and S.pop() are standard. S.multipop() is implemented as:

MULTIPOP(k)
while not EMPTY() and k  0

POP()
k = k – 1

(Note that I’m using object-oriented conventions in my pseudocode
here, assuming that MULTIPOP, EMPTY, POP, etc. are member
functions of the stack S.)

Analyzed by itself, MULTIPOP takes O(min(k, s)) time, where s is the
number of elements in the stack.

© 2020 Shermer Amortized Analysis 6

A sequence of operations

We analyze a sequence of n PUSH, POP, and MULTIPOP
operations on an initially empty stack.

PUSH and POP take O(1) time apiece. A single MULTIPOP
could take O(n) time, so the time for the sequence is easily
bounded by O(n2).

We can do better. Each object can be popped at most
once for each time it is pushed. The number of POPs,
including the POPs within MULTIPOP, are at most the
number of PUSH operations. Thus, over all calls to
MULTIPOP, only O(n) time is taken. This leads to a total
time of O(n).

© 2020 Shermer Amortized Analysis 7

A sequence of operations

In aggregate analysis, we simply divide this total time by n
to get the amortized cost of an operation: O(n) / n = O(1).
That is, it takes constant amortized time for any of our
operations.

We have just shown an average running time of a stack
operation is O(1) with no probabilistic reasoning. We used
the basic definition of an average instead.

© 2020 Shermer Amortized Analysis 8

Incrementing a Binary Counter

Another example of aggregate analysis occurs when
implementing a k-bit binary counter.

We use an array A[0..k-1] of bits. A[0] is the lowest-order
bit and A[k-1] is the highest-order, so the number x
represented by the counter is

෍

𝑖=0

𝑘−1

2𝑖 𝐴 𝑖

The counter starts with x = 0, which means all A[i] are 0.

© 2020 Shermer Amortized Analysis 9

Incrementing a Binary Counter

INCREMENT(A) // note: length[A] = k

i = 0
while i < length[A] and A[i] = 1

A[i] = 0
i = i + 1

if i < length[A]
A[i] = 1

The cost of a call to INCREMENT is linear in the number of bits it flips.
(I.e. it is linear in the number of array entries that it writes.)

A single call to INCREMENT takes Θ(k) in the worst case.

© 2020 Shermer Amortized Analysis 10

Incrementing a Binary Counter

But it’s not the case that every call to INCREMENT flips all k bits. So
let’s look at a sequence of n calls to INCREMENT:

A[0] flips each call
A[1] flips every second call
A[2] flips every fourth call
A[i] flips every 2i calls.

So the total amount of bits flipped for n calls to INCREMENT is:

෍

𝑖=0

𝑘−1
𝑛

2𝑖
≤ ෍

𝑖=0

𝑘−1
𝑛

2𝑖
<෍

𝑖=0

∞
𝑛

2𝑖
= 𝑛෍

𝑖=0

∞
1

2𝑖
= 2𝑛

So the average number of bits flipped per call is at most 2n / n = 2.
Since the work is proportional to the number of bits flipped, the
average work is O(1).

0000
0001
0010
0011
0100
0101
0110
0111
1000

© 2020 Shermer Amortized Analysis 11

The Accounting Method

We assign different charges to different operations: some operations
are charged more or less than their actual cost. The amount we
charge an operation is called its amortized cost.

When an operation’s amortized cost is larger than its actual cost, the
extra cost is assigned to specific objects in the data structure as credit.
Credit is used to help pay for operations whose amortized cost is
smaller than its actual cost.

The total amortized cost of all operations must always be an upper
bound on the total actual cost. This will happen if credit on an item
never goes negative, on any sequence of operations. Picking
amortized costs for operations is the tricky part.

© 2020 Shermer Amortized Analysis 12

Stack Operations:
The Accounting Method

operation actual cost amortized cost

PUSH 1 2 (leave credit on pushed item)

POP 1 0

MULTIPOP min(k, s) 0

The 1-unit credit on each PUSHed item is prepayment for the cost of
POPping it. When we POP an item, we use the 1-unit credit on the
item to pay the actual cost of the POP. If we MULTIPOP, the actual
cost is O(min(k, s)) but we remove min(k, s) items from the stack. We
use the min(k, s) units of credit stored on the removed items to pay for
the actual costs of the MULTIPOP.

The total amortized cost of a sequence of n operations is therefore 2
times the number of PUSH operations, or at most 2n. Thus the total
actual cost is at most 2n, for an average of O(1) per operation.

© 2020 Shermer Amortized Analysis 13

Binary Counter:
The Accounting Method

In INCREMENT, we flip bits.

flip bit to actual cost amortized cost

1 1 2 (credit stored on bit flipped)

0 1 0

We start off with all bits 0 and no credit on them. Therefore, any bit
whose value is 1 will have a 1-unit credit stored on it. Any INCREMENT
operation flips one bit to a 1 and some m ≥ 0 bits to a 0. We pay two
units for the bit flipped to a 1, but the actual cost of the bits flipped to
zero is paid for by the credit stored on those bits. Therefore each
INCREMENT operation has an amortized cost of 2, which is O(1).

© 2020 Shermer Amortized Analysis 14

The Potential Method

In the potential method, we store the prepaid work as a
potential energy (referred to simply as potential) on the
entire data structure.

Suppose we have an initial data structure D0 and perform n
operations on it. For i=1 to n, let ci be the actual cost of
operation i, and Di be the data structure that results after
operation i. Let Φ be the potential function in use.

Then the amortized cost of operation i is:

ෝ𝑐𝑖 = 𝑐𝑖 +Φ 𝐷𝑖 −Φ 𝐷𝑖−1

© 2020 Shermer Amortized Analysis 15

The Potential Method

If we sum this up over all n operations, we get:

෍

𝑖=1

𝑛

ෝ𝑐𝑖 = ෍

𝑖=1

𝑛

(𝑐𝑖+Φ 𝐷𝑖 −Φ 𝐷𝑖−1)

= (෍

𝑖=1

𝑛

𝑐𝑖) + Φ 𝐷𝑛 −Φ(𝐷0)

So if we design a potential function with Φ(Dn) always greater than or
equal to Φ(D0), the summed amortized cost σ𝑖=1

𝑛 ෝ𝑐𝑖 is greater than or
equal to the summed actual cost σ𝑖=1

𝑛 𝑐𝑖.

It is conventional to define Φ(D0) = 0 and show that all Φ(Di) ≥ 0.

Choice of a potential function often involves tradeoffs.

© 2020 Shermer Amortized Analysis 16

Stack Operations:
The Potential Method

We define the potential function Φ to be the number of
objects in the stack.

Since we start with an empty stack, Φ(D0) = 0.

At any point in time, Φ(Di) ≥ 0.

• For a PUSH operation i, Φ(Di) – Φ(Di-1) = 1, so its amortized cost is
ci + Φ(Di) – Φ(Di-1) = 1+1 = 2.

• For a MULTIPOP operation i that pops k’ = min(k, s) elements, the
actual cost of the operation ci = k’, but the potential difference
Φ(Di) – Φ(Di-1) = -k’. Thus the amortized cost of MULTIPOP is k’ –
k’ = 0.

• For a POP operation i, we have ci = 1 and Φ(Di) – Φ(Di-1) =-1, for
an amortized cost of 0.

The amortized cost of a stack operation is O(1).

© 2020 Shermer Amortized Analysis 17

Binary Counter:
The Potential Method

We define the potential function Φ to be the number of bits
equal to 1 in the counter. Φ(D0) = 0.

For an INCREMENT operation i, let ti be the number of bits
of the counter that get set to 0.

Actual cost is at most ti + 1 (at most 1 bit gets set to 1).

Φ(Di) ≤ Φ(Di-1) - ti +1, or
Φ(Di) - Φ(Di-1) ≤ 1 – ti.

So the amortized cost is

ci + Φ(Di) - Φ(Di-1)

≤ (ti + 1) + (1 – ti) = 2

© 2020 Shermer Amortized Analysis 18

Stack Operations with Backup

Suppose we have a stack with the operations PUSH, POP,
and COPY. A sequence of PUSH and POP operations are
performed on the stack, with a COPY operation
automatically inserted after every k PUSH and/or POP
operations. COPY makes a copy of the entire stack for
backup purposes. The size of the stack never exceeds k.
Show that the cost of n PUSH and POP operations,
including the automatic COPY operations, takes time O(n)
by assigning suitable amortized costs to the operations.

(Problem 17.2-1)

© 2020 Shermer Amortized Analysis 19

Stack Operations with Backup

The stack size could be as large as k, so a COPY
operation's actual cost is k. We would like its amortized
cost to be 0, so we need k units of credit to pay for it.

PUSH and POP both have an actual cost of 1. Since there
are k PUSH and POP operations inbetween each COPY
operation, if we get 1 credit from each of them, we will
have enough credit to pay for the COPY.

So we set the amortized cost of PUSH and POP to 2 apiece.
One of that cost goes to pay the actual cost, and 1 is
placed as credit on the stack. Then when a COPY comes
around, we have the credit on the stack to pay for it.

© 2020 Shermer Amortized Analysis 20

Stack Operations with Backup

Exercise:

Can we do the same problem when the stack also has a
MULTIPOP operation? What would be the amortized cost
of each operation?

© 2020 Shermer Amortized Analysis 21

Powers of 2

A sequence of n operations is performed on a data
structure. The ith operation costs i if i is an exact power of
2, and 1 otherwise. What is the amortized cost per
operation?

aggregate method

The cost of the n operations is

σ𝑖=1
𝑛 1 + σ𝑗=0

log 𝑛
(2𝑗 − 1) =

𝑛 + σ𝑗=0
log 𝑛

2𝑗 − σ𝑗=0
log 𝑛

1 =

𝑛 + σ𝑗=0
log 𝑛

2𝑗 − log 𝑛 + 1 =

𝑛 − log 𝑛 + 1 + 2 log 𝑛 +1 − 1 =

© 2020 Shermer Amortized Analysis 22

Powers of 2

𝑛 − log 𝑛 − 2 + 2 ∙ 2 log 𝑛 <

𝑛 + 2 ∙ 2 log 𝑛 ≤

𝑛 + 2𝑛 =

3𝑛.

Amortized cost per operation: less than 3

© 2020 Shermer Amortized Analysis 23

Reading

We won't go over the rest of chapter 17 (dynamic tables),
but please read it.

