
© 2020 Shermer Greedy Algorithms II 1

Greedy Algorithms:
Knapsack and Huffman Codes

Chapter 16.2, 16.3

© 2020 Shermer Greedy Algorithms II 2

Greedy Algorithms

For Activity Selection, we followed the procedure:

1. Determine optimal substructure

2. Develop a recursive solution

3. Prove that for any subproblem, one of the optimal choices is the
greedy choice.

4. Show that all but one of the subproblems resulting from having
made the greedy choice are empty.

5. Develop a recursive algorithm that implements the greedy
strategy.

6. Convert the recursive algorithm to an iterative algorithm.

That’s a lot of steps. In general, we can design greedy
algorithms more simply.

© 2020 Shermer Greedy Algorithms II 3

Greedy design procedure

1. Express the optimization problem as one in which we
make a choice and are left with one subproblem to
solve.

2. Prove that there is always an optimal solution to the
original problem that makes the greedy choice, so the
greedy choice is always safe.

3. Show that the subproblem remaining after a greedy
choice is such that if we combine an optimal solution to
that subproblem with the greedy choice we made, we
get an optimal solution to the original problem. This is
optimal substructure applied to the greedy method.

© 2020 Shermer Greedy Algorithms II 4

Greedy-choice property

The Greedy-choice property is that a globally optimal
solution can be arrived at by making a locally optimal
(greedy) choice.

So in greedy algorithms we are making the choice that
looks best in the current problem, without considering
results from subproblems. This differs from dynamic
programming.

Often proving the greedy-choice property involves proving
you can modify an optimal solution to a subproblem to use
the greedy choice, resulting in a solution that is just as
good (or better!) than the optimal solution.

© 2020 Shermer Greedy Algorithms II 5

0-1 Knapsack problem

There is a collection of n items, with item i being worth vi

dollars and weighing wi kilograms. You have a knapsack
that will hold W kilograms of weight. Which items should
you place in the knapsack to maximize the value of the
items carried?

Here an item must either be taken (1) or not taken (0);
you cannot take part of an item or take an item more than
once.

© 2020 Shermer Greedy Algorithms II 6

Fractional knapsack problem

There is a collection of n items, with item i being worth vi

dollars and weighing wi kilograms. You have a knapsack
that will hold W kilograms of weight. Which items or parts
of items should you place in the knapsack to maximize the
value of the items carried?

Here a fraction f of an item can be taken, 0 ≤ f ≤ 1. The
item could be “a kilogram of flour” and you might take “1/3
of a kilogram of flour”.

© 2020 Shermer Greedy Algorithms II 7

Knapsack problems:
optimal substructure

Both knapsack problems have the optimal substructure property.
Consider the most valuable load that weighs at most W kilos.

• In the 0-1 problem, if we remove item j from this load, the
remaining load must be the most valuable load weighing at most W
- wj made from all items except j.

• In the fractional problem, if we remove the fraction fj of item j that
was in the load, the remaining load must be the most valuable load
weighing at most W – fjwj, taken from all items except j and (1-fj)
of item j.

If not, take the most valuable load of the remaining problem and add
the removed amount of item j to it, getting an even more valuable
load. This is a contradiction.

j

x

© 2020 Shermer Greedy Algorithms II 8

Knapsack problems:
the greedy approach

The 0-1 knapsack problem is not amenable to the greedy
approach, but the fractional knapsack problem is.

To solve the fractional problem, first compute the value per
kilogram vi/wi for each item. Assume the items are sorted
by this value: item 1 has the highest vi/wi, etc. Then take
as much of the first item as the knapsack will hold. If the
knapsack holds all of the first item, add as much of item 2
as will fit. Then as much of item 3 as will fit, etc.

© 2020 Shermer Greedy Algorithms II 9

0-1 Knapsack

The 0-1 knapsack problem is not amenable to the greedy
approach.

(greedy by value/weight)

vi/wi 6/kg 5/kg 4/kg

© 2020 Shermer Greedy Algorithms II 10

0-1 Knapsack

The 0-1 knapsack problem is not amenable to the greedy
approach.

(greedy by value)

But 0-1 Knapsack also has overlapping subproblems, so DP
still works on it.

10
20

50 50

item 1

item 2

item 3

$60 $100 $120 knapsack

50

20

10

greedy by
value

$120

$100

$60

optimal

© 2020 Shermer Greedy Algorithms II 11

Huffman codes

Huffman codes are an effective data compression
technique, giving size savings from 20% to 90% depending
on the type of data.

We consider the data to be a sequence of characters (or
bytes).

Huffman’s technique uses a table of the frequencies of
occurences of each character to build an optimal way of
representing each character as a binary string.

© 2020 Shermer Greedy Algorithms II 12

Fixed-length and
variable-length codes

Suppose we have file of 100,000 bytes, but only 6 different
bytes occur in it. (This happens quite a lot, say, in
computational biology.) We want to design a binary code
for it: each character will be represented by a unique
binary string.

A fixed-length code has every character code the same length. In
our example, we’d need 3 bits/character.

A variable-length code allows the character codes to be different
lengths. We could have some characters be represented by 2 bits,
some by 3, etc.

A Huffman code is a variable-length code. It does
considerably better than a fixed-length code.

© 2020 Shermer Greedy Algorithms II 13

Prefix codes

Huffman codes have the property that no codeword is a
prefix of another codeword. Such codes are called prefix
codes. Optimal data compression can be achieved with a
prefix code.

Suppose we have the simple prefix code a:0, b:101, c:100.
Then we would encode abc as 0 ∙ 101 ∙ 100 = 0101100,
where we use “∙” to denote “followed by” (concatenation).

This encoding step is the same even if the code is not a
prefix code.

© 2020 Shermer Greedy Algorithms II 14

Prefix codes

Prefix codes simplify decoding. Since no codeword is a
prefix of any other, the codeword first detected at the start
of a file is unambiguous. We can identify this codeword,
translate it back to the original character, and repeat the
decoding process on the part of the file that remains.

In our example (a:0, b:101, c:100), the string 10101010100
breaks down uniquely as 101 ∙ 0 ∙ 101 ∙ 0 ∙ 100, decoding
to babac.

© 2020 Shermer Greedy Algorithms II 15

Prefix codes as trees

It is convenient to represent a prefix code as a binary tree,
where the leaves are the given characters. The codeword
for a leaf is the path from the root to that leaf, where 0
means “left child” and 1 means “right child”.

Our example code
(a:0, b:101, c:100)
has the tree shown.

a

c b

0

0

0

1

1

© 2020 Shermer Greedy Algorithms II 16

Optimal prefix codes

Optimal prefix codes are always represented by a full binary
tree, where by full we mean each nonleaf node has two
children.

Our example tree
is not optimal.
The red node has
only 1 child. a

c b

0

0

0

1

1

Here’s a better tree.
It may or may not be
optimal.

a

0 1

c b

0 1

© 2020 Shermer Greedy Algorithms II 17

The cost of a code or tree

Suppose we are given a file F on alphabet C. For each
character c C, let f(c) denote the frequency of that
character in the file.

Let T be a tree corresponding to a prefix code for C. For
each character c C, let dT(c) denote the depth of c's leaf
in the tree. dT(c) is also the length of the codeword for c.

We define the cost of the tree for the file as:

𝐵𝐹 𝑇 =

𝑐∈𝐶

𝑓 𝑐 𝑑𝑇(𝑐)

© 2020 Shermer Greedy Algorithms II 18

Huffman codes

HUFFMAN(C, f) // C is alphabet, f frequencies
create new min-priority-queue Q

for each element c of C

Q.INSERT(c, f[c]) // insert c with key f[c]

while(Q.size() > 1)

allocate a new tree node z

left[z] = Q.EXTRACT-MIN()

right[z] = Q.EXTRACT-MIN()

f[z] = f[left[z]] + f[right[z]]

Q.INSERT(z, f[z]) // insert z with key f[z]

return Q.EXTRACT-MIN()

© 2020 Shermer Greedy Algorithms II 19

Huffman code example

U: 3 G: 7 T: 9 A: 12 C: 18

U: 3 G: 7

10T: 9 A: 12 C: 18

U: 3 G: 7

10

19

T: 9

A: 12 C: 18

© 2020 Shermer Greedy Algorithms II 20

Huffman code example

U: 3 G: 7

10

19

T: 9 A: 12 C: 18

30

U: 3 G: 7

10

19

T: 9 A: 12 C: 18

30

49 Code:
T: 00
U: 010
G: 011
A: 10
C: 11

© 2020 Shermer Greedy Algorithms II 21

Correctness: Greedy-choice
Property

Lemma: Let C be an alphabet with each character c having frequency
f[c]. Let x and y be two characters in C having the lowest frequencies.
Then there exists an optimal prefix code for C in which the codewords
for x and y have the same length and differ by only one bit.

Proof (sketch):

x

y

If x is not at bottom level,
switch it with a non-y vertex
that is. Similarly for y.

Let T be an
optimal tree.

x y

Both x and y are at bottom
level. Switch x with y's
sibling.

© 2020 Shermer Greedy Algorithms II 22

Correctness: Optimal
Substructure

Lemma: Let C be an alphabet with each character c having frequency
f[c]. Let x and y be two characters in C having the lowest frequencies.
Let C' = C – {x,y} + {z} with f[z] = f[x] + f[y]. If T' is an optimal tree
for C', then replacing z in T' with an internal node having the children x
and y yields a tree T that is optimal for C.

Proof (sketch):

z

B(T) = B(T') + f[x] + f[y]
B(T') = B(T) – f[x] – f[y]

T'

x y

If T is not
optimal, let
T'' be
optimal.

T

x y

T''

z

T'''

B(T''') = B(T'') – f[x] – f[y]
< B(T) – f[x] – f[y]
= B(T') contradiction

© 2020 Shermer Greedy Algorithms II 23

Correctness

Theorem: Procedure HUFFMAN produces an optimal prefix
code.

Textbook note: You are not responsible for sections 16.4 and 16.5
(Matroids and Task scheduling).

