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Greedy Algorithms:
Knapsack and Huffman Codes

Chapter 16.2, 16.3
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Greedy Algorithms

For Activity Selection, we followed the procedure:

1. Determine optimal substructure

2. Develop a recursive solution

3. Prove that for any subproblem, one of the optimal choices is the 
greedy choice.

4. Show that all but one of the subproblems resulting from having
made the greedy choice are empty.

5. Develop a recursive algorithm that implements the greedy
strategy.

6. Convert the recursive algorithm to an iterative algorithm.

That’s a lot of steps.  In general, we can design greedy 
algorithms more simply.
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Greedy design procedure

1. Express the optimization problem as one in which we 
make a choice and are left with one subproblem to 
solve.

2. Prove that there is always an optimal solution to the 
original problem that makes the greedy choice, so the 
greedy choice is always safe.

3. Show that the subproblem remaining after a greedy 
choice is such that if we combine an optimal solution to 
that subproblem with the greedy choice we made, we 
get an optimal solution to the original problem.  This is 
optimal substructure applied to the greedy method.
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Greedy-choice property

The Greedy-choice property is that a globally optimal 
solution can be arrived at by making a locally optimal 
(greedy) choice.

So in greedy algorithms we are making the choice that 
looks best in the current problem, without considering 
results from subproblems. This differs from dynamic 
programming.

Often proving the greedy-choice property involves proving 
you can modify an optimal solution to a subproblem to use 
the greedy choice, resulting in a solution that is just as 
good (or better!) than the optimal solution.
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0-1 Knapsack problem

There is a collection of n items, with item i being worth vi

dollars and weighing wi kilograms.  You have a knapsack 
that will hold W kilograms of weight.   Which items should 
you place in the knapsack to maximize the value of the 
items carried?

Here an item must either be taken (1) or not taken (0); 
you cannot take part of an item or take an item more than 
once.   
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Fractional knapsack problem

There is a collection of n items, with item i being worth vi

dollars and weighing wi kilograms.  You have a knapsack 
that will hold W kilograms of weight.   Which items or parts 
of items should you place in the knapsack to maximize the 
value of the items carried?

Here a fraction f of an item can be taken, 0 ≤ f ≤ 1.  The 
item could be “a kilogram of flour” and you might take “1/3 
of a kilogram of flour”.    
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Knapsack problems:
optimal substructure

Both knapsack problems have the optimal substructure property.  
Consider the most valuable load that weighs at most W kilos.  

• In the 0-1 problem, if we remove item j from this load, the 
remaining load must be the most valuable load weighing at most W 
- wj made from all items except j.  

• In the fractional problem, if we remove the fraction fj of item j that 
was in the load, the remaining load must be the most valuable load 
weighing at most W – fjwj, taken from all items except j and (1-fj) 
of item j.

If not, take the most valuable load of the remaining problem and add 
the removed amount of item j to it, getting an even more valuable 
load.  This is a contradiction.

j

x
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Knapsack problems:
the greedy approach

The 0-1 knapsack problem is not amenable to the greedy 
approach, but the fractional knapsack problem is.

To solve the fractional problem, first compute the value per 
kilogram vi/wi for each item.  Assume the items are sorted 
by this value: item 1 has the highest vi/wi, etc.  Then take 
as much of the first item as the knapsack will hold.  If the 
knapsack holds all of the first item, add as much of item 2 
as will fit.  Then as much of item 3 as will fit, etc.
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0-1 Knapsack

The 0-1 knapsack problem is not amenable to the greedy 
approach.   

(greedy by value/weight)

vi/wi 6/kg 5/kg 4/kg
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0-1 Knapsack

The 0-1 knapsack problem is not amenable to the greedy 
approach.   

(greedy by value)

But 0-1 Knapsack also has overlapping subproblems, so DP 
still works on it.
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Huffman codes

Huffman codes are an effective data compression 
technique, giving size savings from 20% to 90% depending 
on the type of data.

We consider the data to be a sequence of characters (or 
bytes).

Huffman’s technique uses a table of the frequencies of 
occurences of each character to build an optimal way of 
representing each character as a binary string.
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Fixed-length and
variable-length codes

Suppose we have file of 100,000 bytes, but only 6 different 
bytes occur in it.  (This happens quite a lot, say, in 
computational biology.)  We want to design a binary code 
for it: each character will be represented by a unique 
binary string.

A fixed-length code has every character code the same length.  In 
our example, we’d need 3 bits/character.

A variable-length code allows the character codes to be different 
lengths.  We could have some characters be represented by 2 bits, 
some by 3, etc.

A Huffman code is a variable-length code.  It does 
considerably better than a fixed-length code.
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Prefix codes

Huffman codes have the property that no codeword is a 
prefix of another codeword.  Such codes are called prefix 
codes.  Optimal data compression can be achieved with a 
prefix code.

Suppose we have the simple prefix code a:0, b:101, c:100. 
Then we would encode abc as 0 ∙ 101 ∙ 100 = 0101100, 
where we use “∙” to denote “followed by” (concatenation).

This encoding step is the same even if the code is not a 
prefix code.
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Prefix codes

Prefix codes simplify decoding.  Since no codeword is a 
prefix of any other, the codeword first detected at the start 
of a file is unambiguous.  We can identify this codeword, 
translate it back to the original character, and repeat the 
decoding process on the part of the file that remains.

In our example (a:0, b:101, c:100), the string 10101010100
breaks down uniquely as 101 ∙ 0 ∙ 101 ∙ 0 ∙ 100, decoding 
to babac.
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Prefix codes as trees

It is convenient to represent a prefix code as a binary tree, 
where the leaves are the given characters.  The codeword 
for a leaf is the path from the root to that leaf, where 0
means “left child” and 1 means “right child”.

Our example code 
(a:0, b:101, c:100) 
has the tree shown. 

a

c b

0

0

0

1

1
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Optimal prefix codes

Optimal prefix codes are always represented by a full binary 
tree, where by full we mean each nonleaf node has two 
children.

Our example tree 
is not optimal.  
The red node has 
only 1 child. a

c b

0

0

0

1

1

Here’s a better tree.  
It may or may not be 
optimal.

a

0 1

c b

0 1
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The cost of a code or tree

Suppose we are given a file F on alphabet C.  For each 
character c  C, let f(c) denote the frequency of that 
character in the file.

Let T be a tree corresponding to a prefix code for C.  For 
each character c  C, let dT(c) denote the depth of c's leaf 
in the tree.  dT(c) is also the length of the codeword for c.

We define the cost of the tree for the file as:

𝐵𝐹 𝑇 = 

𝑐∈𝐶

𝑓 𝑐 𝑑𝑇(𝑐)
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Huffman codes

HUFFMAN(C, f) // C is alphabet, f frequencies
create new min-priority-queue Q

for each element c of C

Q.INSERT(c, f[c]) // insert c with key f[c]

while(Q.size() > 1)

allocate a new tree node z

left[z] = Q.EXTRACT-MIN()

right[z] = Q.EXTRACT-MIN()

f[z] = f[left[z]] + f[right[z]]

Q.INSERT(z, f[z]) // insert z with key f[z]

return Q.EXTRACT-MIN()
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Huffman code example

U: 3 G: 7 T: 9 A: 12 C: 18

U: 3 G: 7

10T: 9 A: 12 C: 18

U: 3 G: 7

10

19

T: 9

A: 12 C: 18
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Huffman code example

U: 3 G: 7

10

19

T: 9 A: 12 C: 18

30

U: 3 G: 7

10

19

T: 9 A: 12 C: 18

30

49 Code:
T: 00
U: 010
G: 011
A: 10
C: 11
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Correctness: Greedy-choice 
Property

Lemma: Let C be an alphabet with each character c having frequency 
f[c].  Let x and y be two characters in C having the lowest frequencies.  
Then there exists an optimal prefix code for C in which the codewords 
for x and y have the same length and differ by only one bit.

Proof (sketch):

x

y

If x is not at bottom level, 
switch it with a non-y vertex 
that is. Similarly for y.

Let T be an 
optimal tree.

x y

Both x and y are at bottom 
level.  Switch x with y's 
sibling.
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Correctness: Optimal 
Substructure

Lemma: Let C be an alphabet with each character c having frequency 
f[c].  Let x and y be two characters in C having the lowest frequencies.  
Let C' = C – {x,y} + {z} with f[z] = f[x] + f[y].  If T' is an optimal tree 
for C', then replacing z in T' with an internal node having the children x 
and y yields a tree T that is optimal for C.

Proof (sketch):

z

B(T) = B(T') + f[x] + f[y]
B(T') = B(T) – f[x] – f[y]

T'

x y

If T is not 
optimal, let 
T'' be 
optimal.

T

x y

T''

z

T'''

B(T''') = B(T'') – f[x] – f[y]
< B(T) – f[x] – f[y]
= B(T')   contradiction



© 2020 Shermer Greedy Algorithms II 23

Correctness

Theorem: Procedure HUFFMAN produces an optimal prefix 
code.

Textbook note:  You are not responsible for sections 16.4 and 16.5 
(Matroids and Task scheduling).


