
© 2020 Shermer Greedy Algorithms I 1

Greedy Algorithms:
Activity Selection

Chapter 16.1

© 2020 Shermer Greedy Algorithms I 2

Greedy Algorithms

For many optimization problems, using dynamic
programming to make choices is overkill.

Sometimes, the correct choice is the one that appears
“best” at the moment.

Greedy algorithms make these locally best choices in the
hope (or knowledge) that this will lead to a globally
optimum solution.

Greedy algorithms do not always yield optimal solutions,
but for many problems they do. (The same can be said
of dynamic programming.)

© 2020 Shermer Greedy Algorithms I 3

Activity Selection

We have a collection S = {a1, a2, …, an} of activities that
all want to use a common resource which can only be
used by one activity at a time (e.g. a TV camera).

Each activity ai has a given start time si and finish time fi.

Our problem is to select a maximum set of activities that
can use the resource. These activities must not overlap
in time.

i 1 2 3 4 5 6 7 8 9

si 3 0 2 3 5 8 9 8 12

fi 4 6 7 8 9 10 12 13 15

© 2020 Shermer Greedy Algorithms I 4

Activity Selection

We start with a DP solution for the problem.

Let Sij= {akS : fi ≤ sk < fk ≤ sj} be the set of activities
which can use the resource between activity i and
activity j.

Add sentinel activities a0 with f0= 0 and
an+1 with sn+1 = ∞ to S.

First assume activities are sorted by increasing order of
finish time. (This requires a sort – O(n log n) time – if
activities are not given in this order.)

Then Sij=  when i ≥ j.

© 2020 Shermer Greedy Algorithms I 5

Optimal substructure

We consider Sij as a subproblem: find a maximal set of
nonoverlapping activities in the set Sij.

Suppose an optimal solution to Sij includes activity ak.
Then it must also include an optimal solution for Sik and
Skj.

ai ajak

Sik
Skj

time

© 2020 Shermer Greedy Algorithms I 6

Overlapping subproblems

Consider subproblem Sij and Sim where the start time of
m is greater than the start time of j.

Let ak be in Sij – then it is also in Sim.

If ak is chosen in Sij, it generates subproblem Sik.

If ak is chosen in Sim, it also generates subproblem Sik.

ai ajak

Sik

time

am

© 2020 Shermer Greedy Algorithms I 7

Recursive Solution

Let c(i, j) be the maximum number of activities in a
solution to subproblem Sij.

c(i, j)=0 when Sij= . In particular, c(i, j) = 0 for i ≥ j.

If ak is used in optimal solution to Sij, then
c(i, j) = c(i, k) + 1 + c(k, j)

time

ai ajak

Sik
Skj

© 2020 Shermer Greedy Algorithms I 8

Recursive Solution

So we try this over all possible ak:

𝑐 𝑖, 𝑗 = ൞

0 if 𝑆𝑖𝑗 = ∅

max
𝑖<𝑘<𝑗
𝑎𝑘∈𝑆𝑖𝑗

{𝑐 𝑖, 𝑘 + 𝑐 𝑘, 𝑗 + 1} if 𝑆𝑖𝑗 ≠ ∅

A memoization or dynamic programming solution based on
this will run in O(n3) time (there are O(n2) table entries to
compute, and each one takes linear time).

Write out the solution and analysis if you didn’t follow that.

© 2020 Shermer Greedy Algorithms I 9

On closer inspection…

Theorem:

Consider any nonempty subproblem Sij and let am be the
activity with the earliest finish time:

fm = min { fk : ak Sij}

Then

1. Activity am is used in some maximum-size subset of
mutually compatible activities of Sij.

2. The suproblem Sim is empty, so that choosing am

leaves the subproblem Smj as the only one that may be
empty.

© 2020 Shermer Greedy Algorithms I 10

Proof:

(1) Let Aij be a maximum-size subset of mutually
compatible activities of Sij. If am is in Aij, we are done. If
am is not in Aij, let ak be the activity of Aij that is first (has
first finish time). Since am finishes at or before any other
activity in Sij, it finishes before ak. Therefore Aij-ak+am is
compatible, and it is a maximum-size subset of Sij.

time

ai aj

ak

am

Aij

© 2020 Shermer Greedy Algorithms I 11

Proof:

(2) By contradiction. Suppose that Sim is nonempty – there
is an activity ak with fi ≤ sk < fk ≤ sm< fm . Then ak is also
in Sij and fk < fm, which contradicts our choice of am.

time

ai aj

ak

am

© 2020 Shermer Greedy Algorithms I 12

Reducing the substructure

The theorem reduces the choices and the recursive
computation necessary in the DP solution.

The choices of activity to include is reduced to one: the
activity with the earliest finish time.

The number of subproblems that we must consider in
solving any subproblem is reduced from two to one: only
Smj is considered, as Sim is empty.

The form of the subproblems considered is reduced from Sij

to Si,n+1. (We don’t have to consider arbitrary j.)

© 2020 Shermer Greedy Algorithms I 13

Recursive solution

Given: arrays s[] and f[] with start and finish times, sorted
to be increasing by finish time.

Start by calling RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n)

RECURSIVE-ACTIVITY-SELECTOR(s, f, i, n)
m = i + 1
while m ≤ n and s[m] < f[i] // find first activity

m = m + 1

if m ≤ n
return {am} ∪ RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n)

else
return 

© 2020 Shermer Greedy Algorithms I 14

Recursive solution analysis
start: R-A-S(s, f, 0, n)

R-A-S(s, f, i, n)
m = i + 1
while m ≤ n and s[m] < f[i]

m = m + 1

if m ≤ n
return {am} ∪ R-A-S(s, f, m, n)

else
return 

Over all calls, m starts at 1 and increases
up to n+1.
Therefore the while executes O(n) times,
taking O(1) time per execution.

The total time for the algorithm is the
total time for the while loop plus O(1) per
call. Since m (and i) increases by one
each call, and is capped at n+1, there
are O(n) calls. So total time is

O(n) loops * O(1) time/loop [while]

+ O(n) calls * O(1) time/call

= O(n) time overall.

© 2020 Shermer Greedy Algorithms I 15

Iterative solution

Given: arrays s[] and f[] with start and finish times, sorted
to be increasing by finish time.

GREEDY-ACTIVITY-SELECTOR(s, f, n)

A = {a1}

lastSelected = 1

for m = 2 to n
if s[m] ≥ f[lastSelected]

A = A ∪ {am}

lastSelected = m

return A

© 2020 Shermer Greedy Algorithms I 16

Iterative solution analysis
GREEDY-ACTIVITY-SELECTOR(s, f, n)

A = {a1} O(1)

lastSelected = 1 O(1)

for m = 2 to n O(n) iterations
if s[m] ≥ f[lastSelected]

A = A ∪ {am} O(1) per iteration

lastSelected = m

return A O(1)

O(n) time total

Reminder: both recursive and iterative solutions are O(n log n) if you need to sort.

© 2020 Shermer Greedy Algorithms I 17

Greedy can be tricky
Our greedy solution used the activity with the earliest finish
time from all those activities that did not conflict with the
activities already chosen.

Other greedy approaches may not give optimum solutions
to the problem, so we have to be clever in our choice of
greedy strategy and prove that we get the optimum
solution.

Here are some other greedy strategies which we could
have tried: (S1) choose the activity with the earliest start
time from all activities that do not conflict with the
activities already chosen.

© 2020 Shermer Greedy Algorithms I 18

Earliest start time
Unfortunately, the activity with the earliest start time could
also have the latest end time.

Here the activities shown in red would have been a better
choice.

(S2) choose the activity with the least duration from all
activities that do not conflict with already chosen activities.

ai ak

© 2020 Shermer Greedy Algorithms I 19

Least duration
Unfortunately, the activity with the least duration could
conflict with two activities from a maximal set.

Here the activities shown in red and yellow would have
been a better choice than red and green.

(S3) choose the activity with the fewest overlaps from all
activities that do not conflict with already chosen activities.

ai ak

© 2020 Shermer Greedy Algorithms I 20

Fewest overlaps
The activity with the fewest overlaps could also conflict
with two activities from a maximal set.

Here the activities shown in red and yellow would have
been a better choice than anything including ak.

(S4) choose the activity with the latest start time from all
activities that do not conflict with already chosen activities.

ai ak

© 2020 Shermer Greedy Algorithms I 21

Latest start time
Choosing the activity with the latest start time is a greedy
strategy that will lead to a maximum set of nonoverlapping
activities.

It's actually the time-reversal of the earliest finish time
strategy.

(S5) choose the activity with the latest finish time from all
activities that do not conflict with already chosen activities.

© 2020 Shermer Greedy Algorithms I 22

Latest finish time
Choosing the activity with the latest finish time doesn't
work—it's a time-reversal of the earliest start time
approach.

The point is that there are often many different greedy
strategies to try. Sometimes when one doesn't work,
another one will, so don't necessarily give up. And be
sure to prove that the strategy you choose works!

When it does not obtain an optimal solution, the greedy
approach is known as a heuristic. Sometimes, a heuristic
solution is an approximation to an optimal one.
Sometimes, not.

