
© 2020 Shermer Dynamic Programming III 1

Dynamic Programming:
Longest Common
Subsequence

Chapter 15.4

© 2020 Shermer Dynamic Programming III 2

Subsequences

A subsequence is a subcollection of the elements of a
sequence, taken in the order they appear in the
sequence.

◼ For instance, if the sequence is ABCDEA, then ACDA is a
subsequence (ABCDEA), but AEC is not.

◼ One can also think of a subsequence as the original sequence
with some elements crossed out: ABCDEA

It is easiest to think of the sequences as strings, but in
reality, any sequences can be used, such as sequences
of integers or real numbers or customer records.

◼ 4 15 24 14 19 33 8 17 has a subsequence 24 19 8 17.

\ \

© 2020 Shermer Dynamic Programming III 3

Longest Common
Subsequence

The Longest Common Subsequence (LCS) problem is to
find a longest sequence that is a subsequence of two
given sequences.

For example, suppose we have two DNA strands
encoded as

X=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA

and

Y=GTCGTTCGGAATGCCGTTGCTCTGTAAA

The length of the LCS is then a measure of the similarity
of the strands.

© 2020 Shermer Dynamic Programming III 4

Longest Common
Subsequence

For these strings,

X=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA

Y=GTCGTTCGGAATGCCGTTGCTCTGTAAA

an LCS is GTCGTCGGAAGCCGGCCGAA.

For X = SPRINGTIME and Y = PIONEER, an LCS is PINE
(SPRINGTIME and PIONEER).

© 2020 Shermer Dynamic Programming III 5

Structure of an LCS

If X = <x1x2…xm> is a sequence, let Xi denote the ith prefix of X. In
notation, Xi = < x1x2…xi>.

Theorem:

Let X = <x1x2…xm> and Y = <y1y2…yn> be sequences, and
let Z = <z1z2…zk> be any LCS of X and Y.

1. If xm = yn, then zk = xm = yn and
Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn, then zk  xm implies that
Z is an LCS of Xm-1 and Y.

3. If xm  yn, then zk  yn implies that
Z is an LCS of X and Yn-1.

© 2020 Shermer Dynamic Programming III 6

Structure of an LCS

Proof:

(1)If zk  xm we could append xm = yn to Z. →
If Zk-1 were not an LCS of Xm-1 and Yn-1, we could
replace it by an LCS W of Xm-1 and Yn-1; then Wzk is
longer than Z. →

(2)If zk  xm then Z is a common subsequence of Xm-1 and
Y. If Z were not an LCS of Xm-1 and Y, we could replace
Z by an LCS W of Xm-1 and Y; then W (which is longer
than Z) is a (longest) common subsequence of X and Y.
→

(3)Symmetric to (2).

© 2020 Shermer Dynamic Programming III 7

DP properties of LCS

The theorem shows that LCS has the optimal-
substructure property. The LCS of X and Y
involves the LCS of prefixes of X and Y.

LCS also has the overlapping subproblems
property: In determining an LCS for Xi and Yj-1, we
may use (case 2) the LCS for Xi-1 and Yj-1.
But also, in determining an LCS for Xi-1 and Yj, we
may also use (case 3) the LCS for Xi-1 and Yj-1.

Thus, differing subproblems make use of the same
subproblem.

© 2020 Shermer Dynamic Programming III 8

Recursive formulation for the
length of an LCS

Consider an LCS of X and Y.

Let c(i, j) be the length of an LCS of sequences Xi

and Yj. Then:

𝑐 𝑖, 𝑗 = ൞

0 if 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1 if 𝑖, 𝑗 > 0 and 𝑥𝑖 = 𝑦𝑗
max(𝑐 𝑖, 𝑗 − 1 , 𝑐 𝑖 − 1, 𝑗) if 𝑖, 𝑗 > 0 and 𝑥𝑖 ≠ 𝑦𝑗

The first case is the basis. The second case is case (1) of
the theorem. The third case is the combination of cases
(2) and (3) of the theorem.

© 2020 Shermer Dynamic Programming III 9

Formulation as code
LCS(X, Y) {

return c(m, n);

} Analysis:

let T(s) be time for c(i, j) where s = i+j

c(i, j) {

if (i=0 or j=0) O(1)

return 0; O(1)

if (X[i] = Y[j]) O(1)

return 1 + c(i-1, j-1); O(1)+T(s-2)

return max(c(i, j-1), c(i-1, j)); O(1)+2T(s-1)

}

T(s) = O(1) if s=0
T(s) = O(1) + max(T(s-2), 2T(s-1)) if not

T(s)  Ω(2s)

© 2020 Shermer Dynamic Programming III 10

Memoized
LCS(X, Y) {

allocate matrix memo[0..m,0..n] = ∞;

return c(m, n);

}

c(i, j) {

if memo[i, j] ≠ ∞

return memo[i, j];

if (i=0 or j=0)

memo[i, j] = 0;

else if (X[i] = Y[j])

memo[i, j] = 1 + c(i-1, j-1);

else

memo[i, j] = max(c(i, j-1), c(i-1, j));

return memo[i, j];

}

© 2020 Shermer Dynamic Programming III 11

Memoized analysis
Consider all calls to c(i, j). At most (m+1)(n+1) of them make it past the
memo-checking if statement. Each of these has the potential to call c()
recursively twice. LCS() calls c() once. Thus there are at most
2(m+1)(n+1) + 1 calls of c(i, j).

The nonrecursive work in c(i, j) is O(1), so the total work in c(i, j) is at
most (2(m+1)(n+1) + 1)∙O(1) = O(mn).

The nonsubroutine work in LCS() is O(1) + matrix allocation work, which is
O(mn) because the entries are initialized to something other than 0.

Thus, the total work is the work in LCS() + work in c() = O(mn) + O(mn)
= O(mn).

Exercise: One can avoid the O(mn) matrix allocation work by having the memo[i, j]
store 1 + length(LCS(Xi,Yj)) rather than length(LCS(Xi,Yj)); this allows initialization
of memo[] by 0. Write out the pseudocode for this. (Work out before viewing the
next slide.)

© 2020 Shermer Dynamic Programming III 12

Memoized Variant
LCS(X, Y) {

allocate matrix memo[0..m,0..n] = 0;

return c(m, n);

}

c(i, j) {

if memo[i, j] ≠ 0

return memo[i, j] - 1;

if (i=0 or j=0)

memo[i, j] = 0 + 1; // note: written 0+1 rather than 1 for clarity.

else if (X[i] = Y[j]) // In code, compiler would clean it up.

memo[i, j] = 1 + c(i-1, j-1) + 1;

else

memo[i, j] = max(c(i, j-1), c(i-1, j)) + 1;

return memo[i, j] - 1;

}

© 2020 Shermer Dynamic Programming III 13

Dynamic Programming
For dynamic programming, we must find the order in
which to compute the memo table entries.

j→


i

memo

We start with the entries that have
i=0 or j=0.

start with these

© 2020 Shermer Dynamic Programming III 14

Dynamic Programming
To compute an entry memo[i, j], we may need
memo[i-1, j-1], memo[i-1, j], and memo[i, j-1].

j→


i

memo

to compute this

we need these

© 2020 Shermer Dynamic Programming III 15

Dynamic Programming
A row-major order (or a column-major one) will ensure
that we have the entries we need when computing
memo[i, j].

j→


i

memo

to compute this

we need these

© 2020 Shermer Dynamic Programming III 16

Dynamic Programming
LCS(X, Y) {

allocate matrix memo[0..m,0..n] = 0;

for i = 1 to m

memo[i, 0] = 0;

for j = 0 to n

memo[0, j] = 0;

for i = 1 to m

for j=1 to n

if X[i] = Y[j]

memo[i, j] = memo[i-1, j-1] + 1;

else

memo[i, j] = max(memo[i-1, j], memo[i, j-1]);

return memo[m, n];

}

© 2020 Shermer Dynamic Programming III 17

Analysis of DP
LCS(X, Y) {

allocate matrix memo[0..m,0..n] = 0; O(1)

for i = 1 to m O(m) iterations

memo[i, 0] = 0; O(1) per iteration

for j = 0 to n O(n) iterations

memo[0, j] = 0; O(1) per iteration

for i = 1 to m

for j=1 to n O(mn) iterations

if X[i] = Y[i]

memo[i, j] = memo[i-1, j-1] + 1; O(1) work per

else iteration

memo[i, j] = max(memo[i-1, j], memo[i, j-1]);

return memo[m, n]; O(1)

} O(m) + O(n) + O(mn) + O(1)

= O(mn)

© 2020 Shermer Dynamic Programming III 18

Textbook notes
LCS on the previous slide is the equivalent of LCS-LENGTH in
the text. LCS-LENGTH uses the array c[i, j] instead of
memo[i, j] and uses b[i, j] to store the traceback information.

The text’s PRINT-LCS is the traceback function.

In the section Improving the code, they note that the
traceback information isn’t really needed for optimal-time
O(m+n) traceback in this problem.

They also show that one can reduce the memory space to
O(min(m, n)) if traceback is not required, by keeping only two
rows (or columns, in column-major order) of the table.

© 2020 Shermer Dynamic Programming III 19

Demonstration
𝑠 𝑝 𝑎 𝑛 𝑘 𝑖 𝑛 𝑔

0 0 0 0 0 0 0 0 0
𝑎 0
𝑚 0
𝑝 0
𝑢 0
𝑡 0
𝑎 0
𝑡 0
𝑖 0
𝑜 0
𝑛 0

© 2020 Shermer Dynamic Programming III 20

Demonstration
𝑠 𝑝 𝑎 𝑛 𝑘 𝑖 𝑛 𝑔

0 0 0 0 0 0 0 0 0
𝑎 0 0 0 1 1 1 1 1 1
𝑚 0
𝑝 0
𝑢 0
𝑡 0
𝑎 0
𝑡 0
𝑖 0
𝑜 0
𝑛 0

same letter different letters

© 2020 Shermer Dynamic Programming III 21

Demonstration
𝑠 𝑝 𝑎 𝑛 𝑘 𝑖 𝑛 𝑔

0 0 0 0 0 0 0 0 0
𝑎 0 0 0 1 1 1 1 1 1
𝑚 0 0 0 1 1 1 1 1 1
𝑝 0
𝑢 0
𝑡 0
𝑎 0
𝑡 0
𝑖 0
𝑜 0
𝑛 0

© 2020 Shermer Dynamic Programming III 22

Demonstration
𝑠 𝑝 𝑎 𝑛 𝑘 𝑖 𝑛 𝑔

0 0 0 0 0 0 0 0 0
𝑎 0 0 0 1 1 1 1 1 1
𝑚 0 0 0 1 1 1 1 1 1
𝑝 0 0 1 1 1 1 1 1 1
𝑢 0 0 1 1 1 1 1 1 1
𝑡 0 0 1 1 1 1 1 1 1
𝑎 0 0 1 2 2 2 2 2 2
𝑡 0 0 1 2 2 2 2 2 2
𝑖 0 0 1 2 2 2 3 3 3
𝑜 0 0 1 2 2 2 3 3 3
𝑛 0 0 1 2 3 3 3 4 4

© 2020 Shermer Dynamic Programming III 23

Demonstration
𝑠 𝑝 𝑎 𝑛 𝑘 𝑖 𝑛 𝑔

0 0 0 0 0 0 0 0 0
𝑎 0 0 0 1 1 1 1 1 1
𝑚 0 0 0 1 1 1 1 1 1
𝑝 0 0 1 1 1 1 1 1 1
𝑢 0 0 1 1 1 1 1 1 1
𝑡 0 0 1 1 1 1 1 1 1
𝑎 0 0 1 2 2 2 2 2 2
𝑡 0 0 1 2 2 2 2 2 2
𝑖 0 0 1 2 2 2 3 3 3
𝑜 0 0 1 2 2 2 3 3 3
𝑛 0 0 1 2 3 3 3 4 4

𝑝 𝑎 𝑖 𝑛

