1. Express $\sum_{i=0}^{n}(7i^2 - 4i + 3)$ as a polynomial $p(n)$. Then prove that the sum $= p(n)$ by induction. Do not omit any steps of the induction proof.

2. Agrisort is a sorting algorithm.
 Agrisort(A, i, j) // A is array to sort; i and j are start and end indices.

 n = j - i + 1
 If (n < 18) {
 sort A[i...j] by insertion-sort
 return
 }
 m1 = i + 2 * n / 3
 m2 = i + n / 3
 Agrisort(A, i, m1)
 Agrisort(A, m2, j)
 Agrisort(A, i, m1)

 a. What is the asymptotic worst-case running time of Agrisort? Show your work.
 b. Prove that Agrisort(A, 1, n) correctly sorts the array A of n elements.

3. Let C be a collection of integers that is represented by two n-element arrays of integers A and B. Each of A and B is sorted from lowest to highest. Give an $O(\log n)$-time algorithm to find the median of C (that is, of the elements of A and B combined). Give pseudocode and analyze it.

4. An Elder Matrix is a $m \times n$ matrix such that each row is sorted in ascending order and each column is sorted in ascending order. Entries in the matrix are allowed to be finite integers or ∞. We use ∞ for nonexistent entries. An Elder Matrix is therefore a holder for up to mn integers.

 Here’s a sample 5 x 5 Elder Matrix:
1 4 8 21 28
14 17 24 33 45
22 30 42 58 79
37 41 48 ∞ ∞
88 92 ∞ ∞ ∞

(a) give an algorithm to perform an EXTRACT-MIN on a m by n Elder Matrix that is not empty. Your algorithm should run in $O(m+n)$ time. Your algorithm should use a recursive function that solves an m by n problem by recursively solving either a $(m-1)$ by n problem or a m by $(n-1)$ problem. Give pseudocode and analyze it.

(b) give an algorithm to perform and INSERT of an integer into a m by n Elder Matrix in $O(m+n)$ time.

(c) Using no other sorting method as a subroutine, show how to use a n by n Elder Matrix to sort n^2 numbers in $O(n^3)$ time. (Suppose we let $k = n^2$. Then this is an $O(k^{1.5})$ sorting algorithm.)