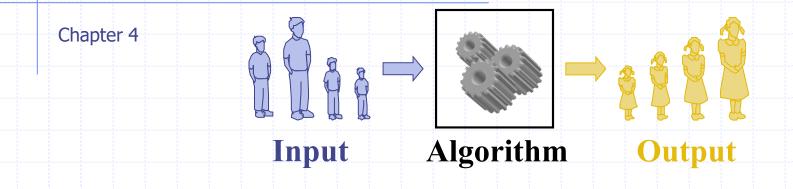
Analysis of Algorithms

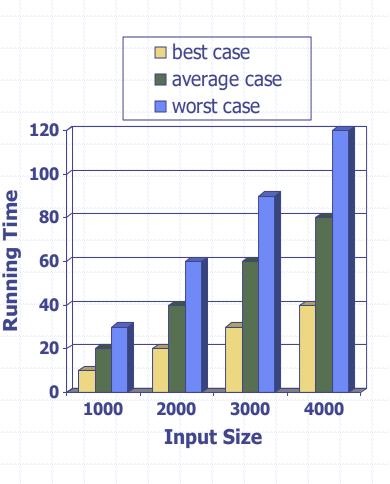


© 2010 Goodrich, Tamassia

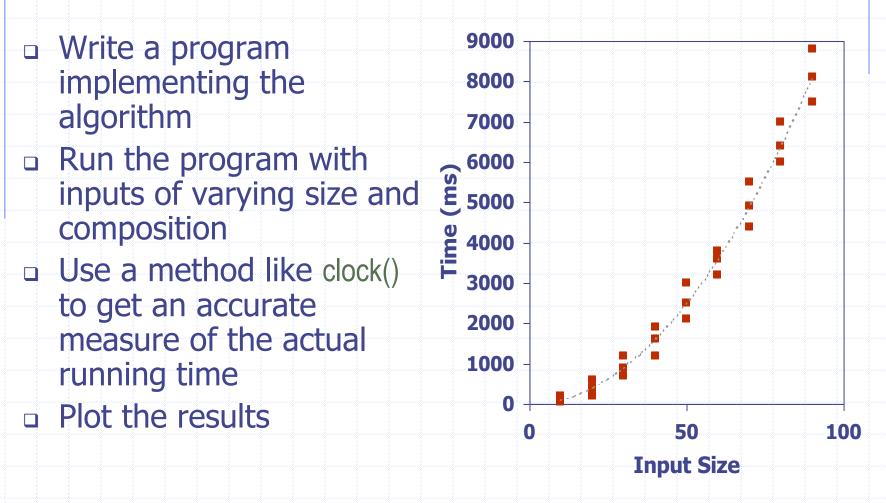
Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics



Experimental Studies



Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used, and the same amount of care in implementation.

4

© 2010 Goodrich, Tamassia, Shermer

Analysis of Algorithms

Theoretical Analysis

Uses a high-level description of the algorithm instead of an implementation Characterizes running time as a function of the input size, n. Takes into account all possible inputs Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm *arrayMax*(*A*, *n*) Input array *A* of *n* integers Output maximum element of *A*

 $currentMax \leftarrow A[0]$ for $i \leftarrow 1$ to n - 1 do if A[i] > currentMax then currentMax $\leftarrow A[i]$ return currentMax

Book Pseudocode

(not mandatory rules)

Control flow

- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration
 - Algorithm *method* (arg [, arg...])
 - Input ...
 - Output ...

Method call var.method (arg [, arg...]) **Return value** return expression Expressions ← Assignment (like = in C++)= Equality testing (like == in C++) n^2 Superscripts and other mathematical

formatting allowed

The Random Access Machine (RAM) Model

 An potentially unbounded bank of **memory** cells, each of which can hold an arbitrary number or character

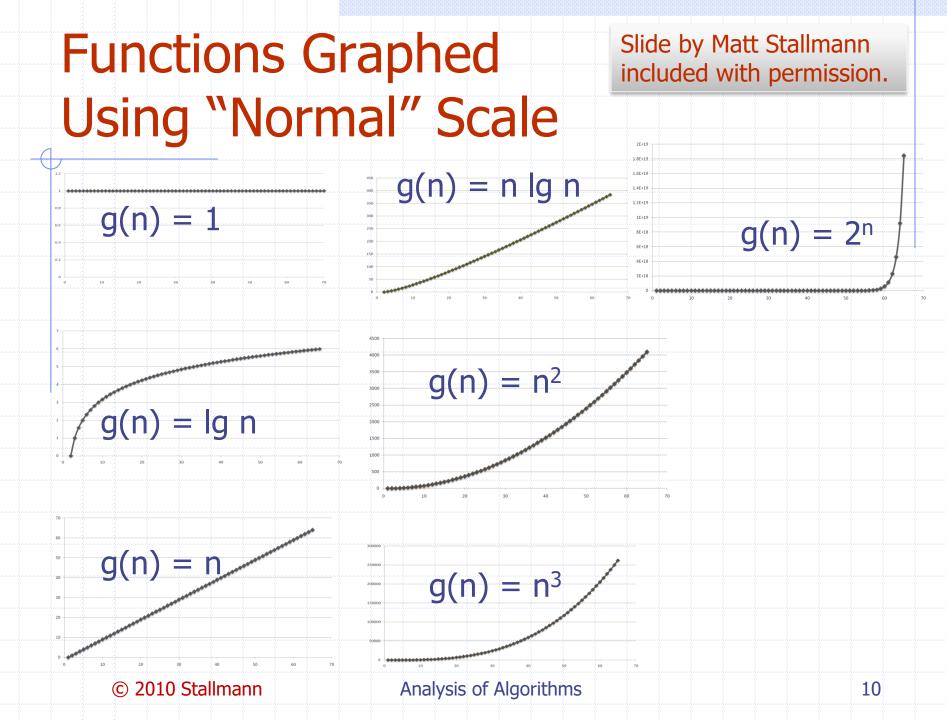
Memory cells are numbered and accessing any cell in memory takes unit time.

© 2010 Goodrich, Tamassia

Analysis of Algorithms

Seven Important Functions

Seven functions that often appear in algorithm 1E+30 1E+28- Cubic analysis: 1E+26- Quadratic • Constant ≈ 1 1E+241E+22Logarithmic $\approx \log n$ - Linear 1E+20Linear $\approx n$ 1E+18 **(e)** 1E+16 1E+14 N-Log-N $\approx n \log n$ • Quadratic $\approx n^2$ 1E+12Cubic $\approx n^3$ 1E+10Exponential $\approx 2^n$ 1E + 81E+61E+4In a log-log chart, the 1E+2 slope of the line 1E+0corresponds to the 1E+6 1E+01E+21E+41E+81E+10growth rate n



Primitive Operations

- Basic computations performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the programming language
 Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Examples:
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

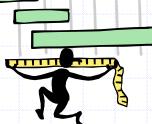
Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

# operations	
2 n	
3(n-1)	
2(n-1)	
2(n-1)	
n – 1	
1	

Total 10*n* – 5

Estimating Running Time



- □ Algorithm *arrayMax* executes 10n 5 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of *arrayMax*. Then $a(10n - 5) \le T(n) \le b(10n - 5)$
- Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time *T(n)* is an intrinsic property of algorithm *arrayMax*

Slide by Matt Stallmann included with permission.

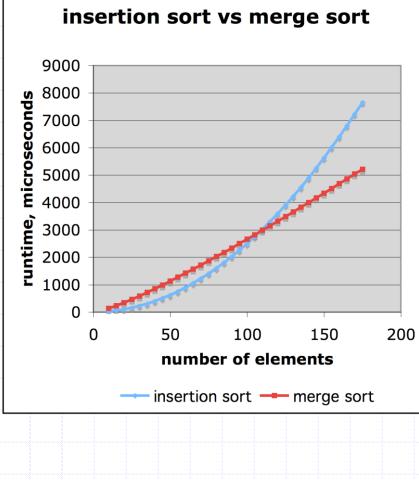
Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n	
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)	
c n	c (n + 1)	2c n	4c n	
cnlgn	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn	runtime quadruples + when
c n²	~ c n ² + 2c n	4c n ²	16c n ²	problem size doubles
c n ³	~ c n ³ + 3c n ²	8c n ³	64c n ³	
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ	
	•			

© 2010 Stallmann

Analysis of Algorithms

Comparison of Two Algorithms



insertion sort is $n^2 / 4$ merge sort is 2 n lg n sort a million items? insertion sort takes roughly 70 hours while merge sort takes roughly 40 seconds This is a slow machine, but if

100 x as fast then it's 40 minutes versus less than 0.5 seconds

© 2010 Stallmann

Analysis of Algorithms

Constant Factors

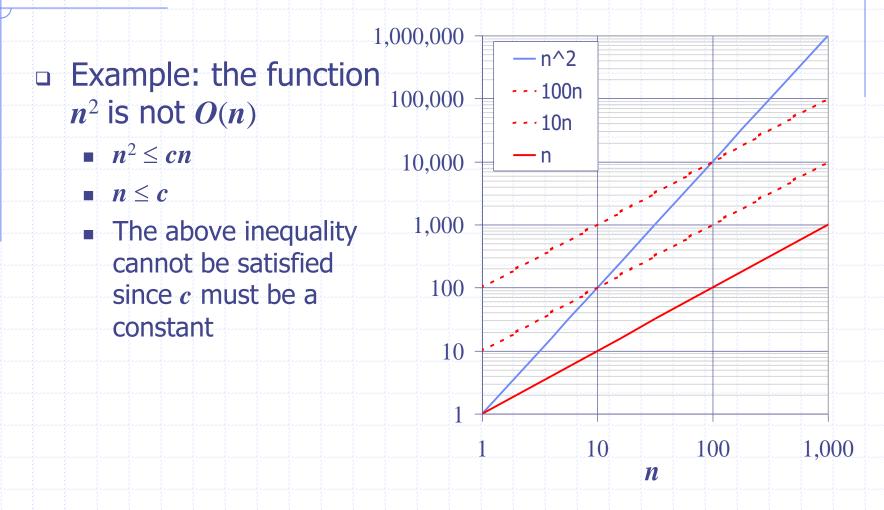
1E+26The growth rate is - Quadratic 1E+24- Quadratic 1E+22 not affected by 1E+20- - · Linear constant factors or 1E+18 - Linear 1E+16 Iower-order terms T(n)1E+14 Examples 1E+121E + 10• $10^2 n + 10^5$ is a linear 1E + 8function 1E+6 $10^{5}n^{2} + 10^{8}n$ is a 1E+4 1E+2 quadratic function 1E+0 1E+01E+21E+41E+61E + 81E + 10

n

Big-Oh Notation

10.000 Given functions f(n) and ---3n g(n), we say that f(n) is O(g(n)) if there are 1.000 2n+10 positive constants 100 c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$ 10 Example: 2n + 10 is O(n)■ $2n + 10 \le cn$ • $(c-2) n \ge 10$ 10 1001,000 ■ $n \ge 10/(c-2)$ n • Pick c = 3 and $n_0 = 10$

Big-Oh Example



More Big-Oh Examples

- 7n-2 is O(n)need c > 0 and $n_0 \ge 1$ such that $7n-2 \le c \cdot n$ for $n \ge n_0$ this is true for c = 7 and $n_0 = 1$
- **a** $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is O(n³)

♦ 7n-2

need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$

■ 3 log n + 5 3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 ≤ c·log n for n ≥ n_0 this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	<i>g</i> (<i>n</i>) is <i>O</i> (<i>f</i> (<i>n</i>))
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is O(n^d), i.e.,
 Drop lower-order terms
 Drop constant factors
 Use the smallest possible class of functions

 Say "2n is O(n)" instead of "2n is O(n²)"
 Use the simplest expression of the class

• Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

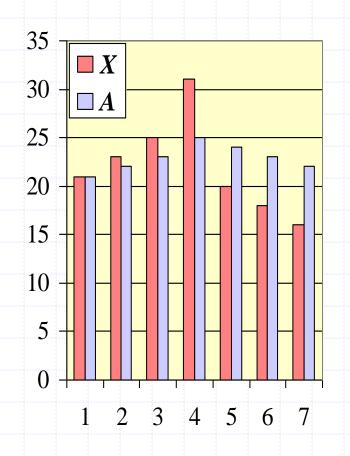
- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation

Example:

- We determine that algorithm *arrayMax* executes at most
 - 10n 5 primitive operations
- We say that algorithm *arrayMax* "runs in *O*(*n*) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The *i*-th prefix average of an array X is average of the first (*i* + 1) elements of X:
- A[i] = (X[0] + X[1] + ... + X[i])/(i+1)
- Computing the array A of prefix averages of another array X has applications to financial analysis



Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm *prefixAverages1(X, n)* **Input** array X of *n* integers Output array A of prefix averages of X *#operations* $A \leftarrow$ new array of *n* integers O(n)for $i \leftarrow 0$ to n - 1 do O(n)O(n) $s \leftarrow X[0]$ O(1 + 2 + ... + (n - 1))for $j \leftarrow 1$ to *i* do O(1 + 2 + ... + (n - 1)) $s \leftarrow s + X[j]$ $A[i] \leftarrow s / (i+1)$ O(n)return A O(1)

Arithmetic Progression

The running time of prefixAverages1 is O(1 + 2 + ... + n)5 □ The sum of the first *n* Δ integers is n(n+1)/23 There is a simple visual 2 proof of this fact Thus, algorithm prefixAverages1 runs in $O(n^2)$ time 1 2 3 4 5 6

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by keeping a running sum
 - Algorithm *prefixAverages2(X, n)*
 - **Input** array *X* of *n* integers
 - Output array A of prefix averages of X *#operations* O(n)
 - $A \leftarrow$ new array of *n* integers
 - $s \leftarrow 0$ for $i \leftarrow 0$ to n - 1 do
 - $s \leftarrow s + X[i]$ $A[i] \leftarrow s / (i+1)$

return A

 \clubsuit Algorithm *prefixAverages2* runs in O(n) time

O(1)

O(n)

O(n)

O(n)

O(1)

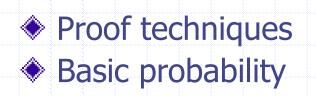
Math you need to Review

Summations

Logarithms and Exponents

$log_{b}(xy) = log_{b}x + log_{b}y$ $log_{b}(x/y) = log_{b}x - log_{b}y$ $log_{b}x^{a} = alog_{b}x$ $log_{b}a = log_{x}a/log_{x}b$ **properties of exponentials:** $a^{(b+c)} = a^{b}a^{c}$ $a^{bc} = (a^{b})^{c}$ $a^{b}/a^{c} = a^{(b-c)}$ $b = a^{log}a^{b}$ $b^{c} = a^{c*log}a^{b}$

properties of logarithms:



Relatives of Big-Oh

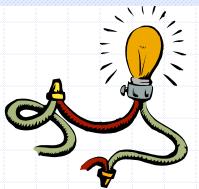
big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n₀ ≥ 1 such that f(n) ≥ c·g(n) for n ≥ n₀

big-Theta

 f(n) is Θ(g(n)) if there are constants c' > 0 and c"
 > 0 and an integer constant n₀ ≥ 1 such that c'·g(n) ≤ f(n) ≤ c"·g(n) for n ≥ n₀

Intuition for Asymptotic Notation



Big-Oh

f(n) is O(g(n)) if f(n) is asymptotically
 less than or equal to g(n)

big-Omega

- f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)
- big-Theta
- f(n) is Θ(g(n)) if f(n) is asymptotically
 equal to g(n)

Example Uses of the Relatives of Big-Oh

• $5n^2$ is $\Omega(n^2)$

- f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$
- let c = 5 and $n_0 = 1$
- $5n^2$ is $\Omega(n)$
 - f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for $n \ge n_0$
 - let c = 1 and $n_0 = 1$

• $5n^2$ is $\Theta(n^2)$

- f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for $n \ge n_0$
- Let c = 5 and $n_0 = 1$

Algorithm Analysis – Tom's Rules of Thumb

- Start by defining a function that represents the time for the thing you are trying to analyze.
 - Often T(n)
 - Be sure to state what n is.
 - Time is worst-case if not specified.

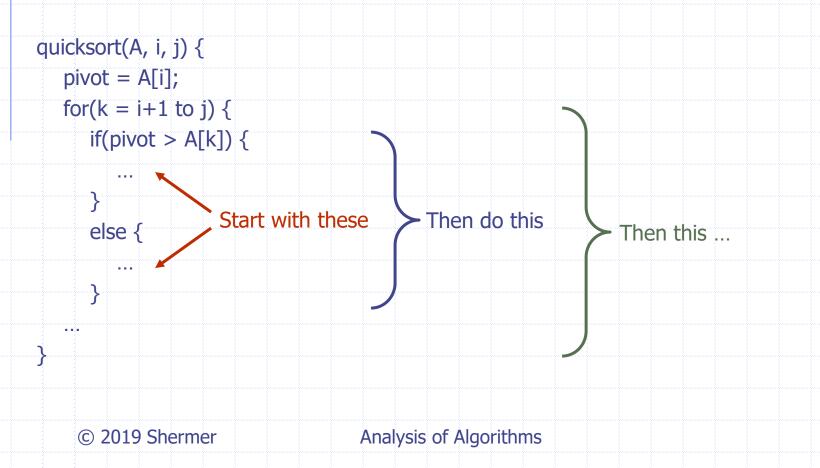
quicksort(A, i, j) {	Let T(n) be the time to complete
	quicksort on n array elements,
}	where n = j-i+1.

the time to complete
on an array of n
(

Analysis of Algorithms

Algorithm Analysis – Tom's Rules of Thumb

Work from inner blocks of (pseudo-)code to outer blocks.



Assignments and Function

- Calls
 - An assignment with no function calls is O(1).
 - A function call to a known algorithm (not the one you are analyzing) takes the known time for that algorithm.

foo(A, n) {

a de

}

k = (j+91)/3;O(1)m = max(A, n);O(n) (finding maximum of an array takes linear time)p = (j - 17) + max(B, n)O(1) + O(n) = O(n)

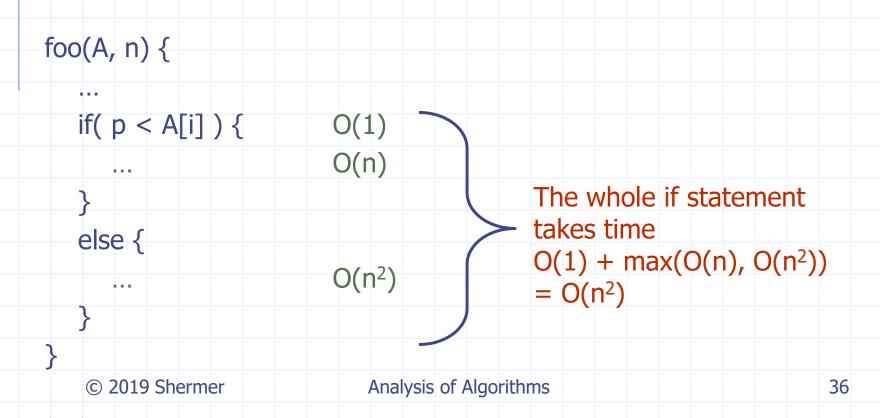
Recursive Function Calls

 A function call to the algorithm you are analyzing takes (the function you defined)(some function of n) time.
 For example, T(n/2)

foo(A, n) {	Define S(n) to be time taken by foo with second parameter n
•••	
foo(A, n-2);	S(n-2)
}	
bar(A, i, j) {	Define T(n) to be time taken by bar with $n = j-i+1$
m = (i + j) / 2;	
bar(A, i, m);	T(n/2)
·····	
}	
2010 Charmenau	

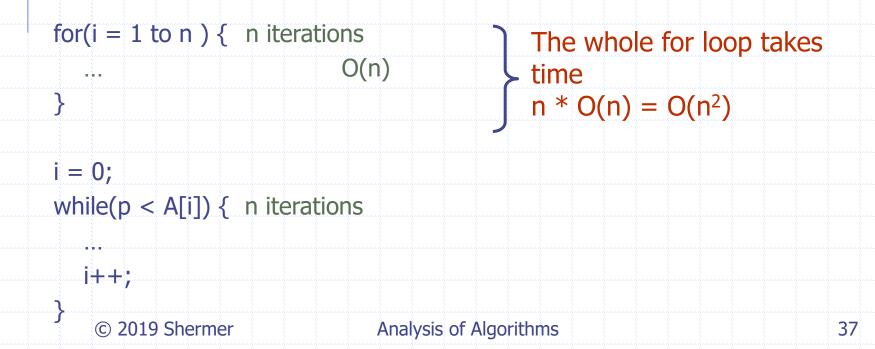
Conditionals

Add up the time in each branch of the conditional.
The conditional takes the time taken by the condition, plus the maximum of the branch times.



Loops

- Add up the time in the body of the loop.
- Determine how many times t the loop will be executed, as a function of your n. Use worst-case estimate.
- The time for the loop is t * (time for body)



Triangular Loops

- Triangular loops have an inner index that counts up to the outer index.
- Assume the inner loops have the same number of iterations as the outer loop.

for(i = 1 to n) { n iterations

for(j = 1 to i) { n iterations

□ This also works for more than two nested loops

. . .

}

}

At the end

- Set (the function of n you defined) = the summed-up cost of the entire algorithm.
- Reminder: Along the way, don't absorb T(...) factors into the big-Oh notation.
- If you end up with a recurrence, solve it.

At the end

int find(A, i, j, target) { Let T(n) be the time for find where n = j-i+1. if(i == j) { if(A[i] == target) 0(1) return i O(1) O(1) else O(1) return -1 O(1) + 2T(n/2)O(1) m = (i + j) / 2f = find(A, i, m, target)T(n/2) if(f > 0) { O(1) O(1) T(n) = O(1) +return f 2T(n/2) } return find(A, m+1, j, target) T(n/2) T(n) is O(n)}