
Analysis of Algorithms

AlgorithmInput Output

© 2010 Goodrich, Tamassia 1Analysis of Algorithms

Chapter 4

Analysis of Algorithms 2

Running Time

❑ Most algorithms transform
input objects into output
objects.

❑ The running time of an
algorithm typically grows
with the input size.

❑ Average case time is often
difficult to determine.

❑ We focus on the worst case
running time.
◼ Easier to analyze

◼ Crucial to applications such as
games, finance and robotics

0

20

40

60

80

100

120

R
u

n
n

in
g

 T
im

e
1000 2000 3000 4000

Input Size

best case

average case

worst case

© 2010 Goodrich, Tamassia

Analysis of Algorithms 3

Experimental Studies

❑ Write a program
implementing the
algorithm

❑ Run the program with
inputs of varying size and
composition

❑ Use a method like clock()
to get an accurate
measure of the actual
running time

❑ Plot the results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s
)

© 2010 Goodrich, Tamassia

Analysis of Algorithms 4

Limitations of Experiments
❑ It is necessary to implement the

algorithm, which may be difficult

❑ Results may not be indicative of the
running time on other inputs not included
in the experiment.

❑ In order to compare two algorithms, the
same hardware and software
environments must be used,
and the same amount of care
in implementation.

© 2010 Goodrich, Tamassia,
Shermer

Analysis of Algorithms 5

Theoretical Analysis

❑ Uses a high-level description of the
algorithm instead of an implementation

❑ Characterizes running time as a
function of the input size, n.

❑ Takes into account all possible inputs

❑ Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

© 2010 Goodrich, Tamassia

Analysis of Algorithms 6

Pseudocode

❑ High-level description
of an algorithm

❑ More structured than
English prose

❑ Less detailed than a
program

❑ Preferred notation for
describing algorithms

❑ Hides program design
issues

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax A[0]

for i 1 to n − 1 do

if A[i] currentMax then

currentMax A[i]

return currentMax

Example: find max
element of an array

© 2010 Goodrich, Tamassia

Analysis of Algorithms 7

Book Pseudocode
(not mandatory rules)

❑ Control flow
◼ if … then … [else …]

◼ while … do …

◼ repeat … until …

◼ for … do …

◼ Indentation replaces braces

❑ Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

❑ Method call
var.method (arg [, arg…])

❑ Return value
return expression

❑ Expressions
Assignment

(like = in C++)

= Equality testing
(like == in C++)

n2 Superscripts and other
mathematical
formatting allowed

© 2010 Goodrich, Tamassia

Analysis of Algorithms 8

The Random Access Machine
(RAM) Model

❑ A CPU

❑ An potentially unbounded
bank of memory cells,
each of which can hold an
arbitrary number or
character

0
1
2

Memory cells are numbered and accessing
any cell in memory takes unit time.

© 2010 Goodrich, Tamassia

Analysis of Algorithms 9

Seven Important Functions
❑ Seven functions that

often appear in algorithm
analysis:
◼ Constant 1

◼ Logarithmic log n

◼ Linear n

◼ N-Log-N n log n

◼ Quadratic n2

◼ Cubic n3

◼ Exponential 2n

❑ In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Cubic

Quadratic

Linear

© 2010 Goodrich, Tamassia

Functions Graphed
Using “Normal” Scale

© 2010 Stallmann 10Analysis of Algorithms

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann
included with permission.

Analysis of Algorithms 11

Primitive Operations

❑ Basic computations
performed by an algorithm

❑ Identifiable in pseudocode

❑ Largely independent from the
programming language

❑ Exact definition not important
(we will see why later)

❑ Assumed to take a constant
amount of time in the RAM
model

❑ Examples:

◼ Evaluating an
expression

◼ Assigning a value
to a variable

◼ Indexing into an
array

◼ Calling a method

◼ Returning from a
method

© 2010 Goodrich, Tamassia

Analysis of Algorithms 12

Counting Primitive Operations
❑ By inspecting the pseudocode, we can determine the

maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax A[0] 2

for i 1 to n − 1 do 2n

if A[i] currentMax then 3(n − 1)

currentMax A[i] 2(n − 1)

{ increment counter i } 2(n − 1)

{ jump to top of loop } n − 1

return currentMax 1

Total 10n − 5

© 2010 Goodrich, Tamassia

Analysis of Algorithms 13

Estimating Running Time

❑ Algorithm arrayMax executes 10n − 5 primitive

operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

❑ Let T(n) be worst-case time of arrayMax. Then
a(10n − 5) T(n) b(10n − 5)

❑ Hence, the running time T(n) is bounded by two

linear functions

© 2010 Goodrich, Tamassia

Analysis of Algorithms 14

Growth Rate of Running Time

❑ Changing the hardware/ software
environment

◼ Affects T(n) by a constant factor, but

◼ Does not alter the growth rate of T(n)

❑ The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax

© 2010 Goodrich, Tamassia

Why Growth Rate Matters

© 2010 Stallmann 15Analysis of Algorithms

Slide by Matt Stallmann
included with permission.

if runtime

is...
time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n

2c n lg n +

2cn

4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when
problem
size doubles

Comparison of Two Algorithms

© 2010 Stallmann 16Analysis of Algorithms

insertion sort is
n2 / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes

roughly 70 hours
while

merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds

Analysis of Algorithms 17

Constant Factors

❑ The growth rate is
not affected by

◼ constant factors or

◼ lower-order terms

❑ Examples
◼ 102n + 105 is a linear

function

◼ 105n2 + 108n is a

quadratic function
1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Quadratic

Quadratic

Linear

Linear

© 2010 Goodrich, Tamassia

Analysis of Algorithms 18

Big-Oh Notation
❑ Given functions f(n) and

g(n), we say that f(n) is
O(g(n)) if there are

positive constants
c and n0 such that

f(n) cg(n) for n n0

❑ Example: 2n + 10 is O(n)

◼ 2n + 10 cn

◼ (c − 2) n 10

◼ n 10/(c − 2)

◼ Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

© 2010 Goodrich, Tamassia

Analysis of Algorithms 19

Big-Oh Example

❑ Example: the function
n2 is not O(n)

◼ n2 cn

◼ n c

◼ The above inequality
cannot be satisfied
since c must be a

constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

© 2010 Goodrich, Tamassia

Analysis of Algorithms 20

More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0 1 such that 7n-2 c‧n for n n0

this is true for c = 7 and n0 = 1

◼ 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0 1 such that 3n3 + 20n2 + 5 c‧n3 for n n0

this is true for c = 4 and n0 = 21

◼ 3 log n + 5

3 log n + 5 is O(log n)

need c > 0 and n0 1 such that 3 log n + 5 c‧log n for n n0

this is true for c = 8 and n0 = 2

© 2010 Goodrich, Tamassia

Analysis of Algorithms 21

Big-Oh and Growth Rate

❑ The big-Oh notation gives an upper bound on the
growth rate of a function

❑ The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

❑ We can use the big-Oh notation to rank functions
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

© 2010 Goodrich, Tamassia

Analysis of Algorithms 22

Big-Oh Rules

❑ If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

❑ Use the smallest possible class of functions

◼ Say “2n is O(n)” instead of “2n is O(n2)”

❑ Use the simplest expression of the class

◼ Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2010 Goodrich, Tamassia

Analysis of Algorithms 23

Asymptotic Algorithm Analysis
❑ The asymptotic analysis of an algorithm determines

the running time in big-Oh notation

❑ To perform the asymptotic analysis
◼ We find the worst-case number of primitive operations

executed as a function of the input size

◼ We express this function with big-Oh notation

❑ Example:
◼ We determine that algorithm arrayMax executes at most

10n − 5 primitive operations

◼ We say that algorithm arrayMax “runs in O(n) time”

❑ Since constant factors and lower-order terms are
eventually dropped anyhow, we can disregard them
when counting primitive operations

© 2010 Goodrich, Tamassia

Analysis of Algorithms 24

Computing Prefix Averages

❑ We further illustrate
asymptotic analysis with
two algorithms for prefix
averages

❑ The i-th prefix average of
an array X is average of the
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

❑ Computing the array A of
prefix averages of another
array X has applications to
financial analysis

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

© 2010 Goodrich, Tamassia

Analysis of Algorithms 25

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A new array of n integers O(n)

for i 0 to n − 1 do O(n)

s X[0] O(n)

for j 1 to i do O(1 + 2 + …+ (n − 1))

s s + X[j] O(1 + 2 + …+ (n − 1))

A[i] s / (i + 1) O(n)

return A O(1)

© 2010 Goodrich, Tamassia

Analysis of Algorithms 26

Arithmetic Progression

❑ The running time of
prefixAverages1 is
O(1 + 2 + …+ n)

❑ The sum of the first n
integers is n(n + 1) / 2

◼ There is a simple visual
proof of this fact

❑ Thus, algorithm
prefixAverages1 runs in
O(n2) time

0

1

2

3

4

5

6

7

1 2 3 4 5 6

© 2010 Goodrich, Tamassia

Analysis of Algorithms 27

Prefix Averages (Linear)
The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A new array of n integers O(n)

s 0 O(1)

for i 0 to n − 1 do O(n)

s s + X[i] O(n)

A[i] s / (i + 1) O(n)

return A O(1)

Algorithm prefixAverages2 runs in O(n) time

© 2010 Goodrich, Tamassia

Analysis of Algorithms 28

❑ properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbx
a = alogbx

logba = logxa/logxb

❑ properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

Summations

Logarithms and Exponents

Proof techniques

Basic probability

Math you need to Review

© 2010 Goodrich, Tamassia

Analysis of Algorithms 29

Relatives of Big-Oh

big-Omega

◼ f(n) is (g(n)) if there is a constant c > 0

and an integer constant n0 1 such that

f(n) c‧g(n) for n n0

big-Theta

◼ f(n) is (g(n)) if there are constants c’ > 0 and c’’
> 0 and an integer constant n0 1 such that
c’‧g(n) f(n) c’’‧g(n) for n n0

© 2010 Goodrich, Tamassia

Analysis of Algorithms 30

Intuition for Asymptotic
Notation

Big-Oh

◼ f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

big-Omega

◼ f(n) is (g(n)) if f(n) is asymptotically
greater than or equal to g(n)

big-Theta

◼ f(n) is (g(n)) if f(n) is asymptotically
equal to g(n)

© 2010 Goodrich, Tamassia

Analysis of Algorithms 31

Example Uses of the
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0 1 such that f(n) < c‧g(n) for n n0

Let c = 5 and n0 = 1

◼ 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0 1
such that f(n) c‧g(n) for n n0

let c = 1 and n0 = 1

◼ 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0 1
such that f(n) c‧g(n) for n n0

let c = 5 and n0 = 1

◼ 5n2 is (n2)

© 2010 Goodrich, Tamassia

Analysis of Algorithms 32

Algorithm Analysis –
Tom’s Rules of Thumb
◼ Start by defining a function that represents the time

for the thing you are trying to analyze.

◼ Often T(n)

◼ Be sure to state what n is.

◼ Time is worst-case if not specified.

quicksort(A, i, j) {

…

}

bubblesort(A) {

…

}

© 2019 Shermer

Let T(n) be the time to complete
quicksort on n array elements,
where n = j-i+1.

Let S(n) be the time to complete
bubblesort on an array of n
elements.

Analysis of Algorithms 33

Algorithm Analysis –
Tom’s Rules of Thumb
◼ Work from inner blocks of (pseudo-)code to outer

blocks.

quicksort(A, i, j) {

pivot = A[i];

for(k = i+1 to j) {

if(pivot > A[k]) {

…

}

else {

…

}

…

}

© 2019 Shermer

Start with these Then do this
Then this …

Analysis of Algorithms 34

Assignments and Function
Calls
◼ An assignment with no function calls is O(1).

◼ A function call to a known algorithm (not the one you
are analyzing) takes the known time for that algorithm.

foo(A, n) {

…

k = (j+91)/3; O(1)

m = max(A, n); O(n) (finding maximum of an array takes linear time)

p = (j – 17) + max(B, n) O(1) + O(n) = O(n)

…

}

© 2019 Shermer

Analysis of Algorithms 35

Recursive Function Calls

◼ A function call to the algorithm you are analyzing takes
(the function you defined)(some function of n) time.

◼ For example, T(n/2)

foo(A, n) { Define S(n) to be time taken by foo with second
parameter n

…

foo(A, n-2); S(n-2)

}

bar(A, i, j) { Define T(n) to be time taken by bar with n = j-i+1

m = (i + j) / 2;

bar(A, i, m); T(n/2)

…

}

© 2019 Shermer

Analysis of Algorithms 36

Conditionals

◼ Add up the time in each branch of the conditional.

◼ The conditional takes the time taken by the condition,
plus the maximum of the branch times.

foo(A, n) {

…

if(p < A[i]) { O(1)

… O(n)

}

else {

… O(n2)

}

}
© 2019 Shermer

The whole if statement
takes time
O(1) + max(O(n), O(n2))
= O(n2)

Analysis of Algorithms 37

Loops

◼ Add up the time in the body of the loop.

◼ Determine how many times t the loop will be executed,
as a function of your n. Use worst-case estimate.

◼ The time for the loop is t * (time for body)

for(i = 1 to n) { n iterations

… O(n)

}

i = 0;

while(p < A[i]) { n iterations

…

i++;

}
© 2019 Shermer

The whole for loop takes
time
n * O(n) = O(n2)

Analysis of Algorithms 38

Triangular Loops

◼ Triangular loops have an inner index that counts up to
the outer index.

◼ Assume the inner loops have the same number of
iterations as the outer loop.

for(i = 1 to n) { n iterations

…

for(j = 1 to i) { n iterations

…

}

}

❑ This also works for more than two nested loops

© 2019 Shermer

Analysis of Algorithms 39

At the end

◼ Set (the function of n you defined) = the summed-up
cost of the entire algorithm.

◼ Reminder: Along the way, don’t absorb T(…) factors
into the big-Oh notation.

◼ If you end up with a recurrence, solve it.

© 2019 Shermer

Analysis of Algorithms 40

At the end

int find(A, i, j, target) { Let T(n) be the time for find where n = j-i+1.

if(i == j) {

if(A[i] == target)

return i O(1)

else

return -1 O(1)

}

m = (i + j) / 2 O(1)

f = find(A, i, m, target) T(n/2)

if(f > 0) {

return f O(1)

}

return find(A, m+1, j, target) T(n/2)

}

© 2019 Shermer

O(1) O(1)

O(1)

O(1) + 2T(n/2)

T(n) = O(1) +
2T(n/2)

T(n) is O(n)

