
Analysis of Algorithms

AlgorithmInput Output

© 2010 Goodrich, Tamassia 1Analysis of Algorithms

Chapter 4



Analysis of Algorithms 2

Running Time

❑ Most algorithms transform 
input objects into output 
objects.

❑ The running time of an 
algorithm typically grows 
with the input size.

❑ Average case time is often 
difficult to determine.

❑ We focus on the worst case
running time.
◼ Easier to analyze

◼ Crucial to applications such as 
games, finance and robotics
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Experimental Studies

❑ Write a program 
implementing the 
algorithm

❑ Run the program with 
inputs of varying size and 
composition

❑ Use a method like clock()
to get an accurate 
measure of the actual 
running time

❑ Plot the results
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Limitations of Experiments
❑ It is necessary to implement the 

algorithm, which may be difficult

❑ Results may not be indicative of the 
running time on other inputs not included 
in the experiment. 

❑ In order to compare two algorithms, the 
same hardware and software 
environments must be used,
and the same amount of care
in implementation.

© 2010 Goodrich, Tamassia,
Shermer
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Theoretical Analysis

❑ Uses a high-level description of the 
algorithm instead of an implementation

❑ Characterizes running time as a 
function of the input size, n.

❑ Takes into account all possible inputs

❑ Allows us to evaluate the speed of an 
algorithm independent of the 
hardware/software environment
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Pseudocode

❑ High-level description 
of an algorithm

❑ More structured than 
English prose

❑ Less detailed than a 
program

❑ Preferred notation for 
describing algorithms

❑ Hides program design 
issues

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax  A[0]

for i  1 to n − 1 do

if A[i]  currentMax then

currentMax  A[i]

return currentMax

Example: find max 
element of an array

© 2010 Goodrich, Tamassia
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Book Pseudocode
(not mandatory rules)

❑ Control flow
◼ if … then … [else …]

◼ while … do …

◼ repeat … until …

◼ for … do …

◼ Indentation replaces braces 

❑ Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

❑ Method call
var.method (arg [, arg…])

❑ Return value
return expression

❑ Expressions
Assignment

(like = in C++)

= Equality testing
(like == in C++)

n2 Superscripts and other 
mathematical 
formatting allowed

© 2010 Goodrich, Tamassia
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The Random Access Machine 
(RAM) Model

❑ A CPU

❑ An potentially unbounded 
bank of memory cells, 
each of which can hold an 
arbitrary number or 
character

0
1
2

Memory cells are numbered and accessing 
any cell in memory takes unit time.
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Seven Important Functions
❑ Seven functions that 

often appear in algorithm 
analysis:
◼ Constant  1

◼ Logarithmic  log n

◼ Linear  n

◼ N-Log-N  n log n

◼ Quadratic  n2

◼ Cubic  n3

◼ Exponential  2n

❑ In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate
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Functions Graphed 
Using “Normal” Scale
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g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

Slide by Matt Stallmann 
included with permission.
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Primitive Operations

❑ Basic computations 
performed by an algorithm

❑ Identifiable in pseudocode

❑ Largely independent from the 
programming language

❑ Exact definition not important 
(we will see why later)

❑ Assumed to take a constant 
amount of time in the RAM 
model

❑ Examples:

◼ Evaluating an 
expression

◼ Assigning a value 
to a variable

◼ Indexing into an 
array

◼ Calling a method

◼ Returning from a 
method

© 2010 Goodrich, Tamassia
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Counting Primitive Operations
❑ By inspecting the pseudocode, we can determine the 

maximum number of primitive operations executed by 
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax  A[0] 2

for i  1 to n − 1 do 2n

if A[i]  currentMax then 3(n − 1)

currentMax  A[i] 2(n − 1)

{ increment counter i } 2(n − 1)

{ jump to top of loop } n − 1

return currentMax 1

Total 10n − 5

© 2010 Goodrich, Tamassia
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Estimating Running Time

❑ Algorithm arrayMax executes 10n − 5 primitive 

operations in the worst case.  Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

❑ Let T(n) be worst-case time of arrayMax. Then
a(10n − 5)  T(n)  b(10n − 5)

❑ Hence, the running time T(n) is bounded by two 

linear functions

© 2010 Goodrich, Tamassia
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Growth Rate of Running Time

❑ Changing the hardware/ software 
environment 

◼ Affects T(n) by a constant factor, but

◼ Does not alter the growth rate of T(n)

❑ The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax

© 2010 Goodrich, Tamassia



Why Growth Rate Matters
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Slide by Matt Stallmann 
included with permission.

if runtime 

is...
time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+  c n

2c n lg n + 

2cn

4c n lg n + 

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2 n+1 c 2 2n c 2 4n

runtime
quadruples
when 
problem
size doubles



Comparison of Two Algorithms
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insertion sort is
n2 / 4

merge sort is
2 n lg n

sort a million items?
insertion sort takes

roughly 70 hours
while

merge sort takes
roughly 40 seconds

This is a slow machine, but if
100 x as fast then it’s 40 minutes
versus less than 0.5 seconds
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Constant Factors

❑ The growth rate is 
not affected by

◼ constant factors or 

◼ lower-order terms

❑ Examples
◼ 102n + 105 is a linear 

function

◼ 105n2 + 108n is a 

quadratic function
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Big-Oh Notation
❑ Given functions f(n) and 

g(n), we say that f(n) is 
O(g(n)) if there are 

positive constants
c and n0 such that

f(n)  cg(n)  for n  n0

❑ Example: 2n + 10 is O(n)

◼ 2n + 10  cn

◼ (c − 2) n  10

◼ n  10/(c − 2)

◼ Pick c = 3 and n0 = 10
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Big-Oh Example

❑ Example: the function 
n2 is not O(n)

◼ n2  cn

◼ n  c

◼ The above inequality 
cannot be satisfied 
since c must be a 

constant 
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More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0  1 such that 7n-2  c‧n for n  n0

this is true for c = 7 and n0 = 1

◼ 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0  1 such that 3n3 + 20n2 + 5  c‧n3 for n  n0

this is true for c = 4 and n0 = 21

◼ 3 log n + 5

3 log n + 5 is O(log n)

need c > 0 and n0  1 such that 3 log n + 5  c‧log n for n  n0

this is true for c = 8 and n0 = 2

© 2010 Goodrich, Tamassia
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Big-Oh and Growth Rate

❑ The big-Oh notation gives an upper bound on the 
growth rate of a function

❑ The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)

❑ We can use the big-Oh notation to rank functions 
according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

© 2010 Goodrich, Tamassia
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Big-Oh Rules

❑ If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

❑ Use the smallest possible class of functions

◼ Say “2n is O(n)” instead of “2n is O(n2)”

❑ Use the simplest expression of the class

◼ Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

© 2010 Goodrich, Tamassia
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Asymptotic Algorithm Analysis
❑ The asymptotic analysis of an algorithm determines 

the running time in big-Oh notation

❑ To perform the asymptotic analysis
◼ We find the worst-case number of primitive operations 

executed as a function of the input size

◼ We express this function with big-Oh notation

❑ Example:
◼ We determine that algorithm arrayMax executes at most 

10n − 5 primitive operations

◼ We say that algorithm arrayMax “runs in O(n) time”

❑ Since constant factors and lower-order terms are 
eventually dropped anyhow, we can disregard them 
when counting primitive operations

© 2010 Goodrich, Tamassia
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Computing Prefix Averages

❑ We further illustrate 
asymptotic analysis with 
two algorithms for prefix 
averages

❑ The i-th prefix average of 
an array X is average of the 
first (i + 1) elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

❑ Computing the array A of 
prefix averages of another 
array X has applications to 
financial analysis
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Prefix Averages (Quadratic)
The following algorithm computes prefix averages in 
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A  new array of n integers O(n)

for i  0 to n − 1 do O(n)

s  X[0] O(n)

for j  1 to i do O(1 + 2 + …+ (n − 1))

s  s + X[j] O(1 + 2 + …+ (n − 1))

A[i]  s / (i + 1) O(n)

return A O(1)

© 2010 Goodrich, Tamassia
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Arithmetic Progression

❑ The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)

❑ The sum of the first n
integers is n(n + 1) / 2

◼ There is a simple visual 
proof of this fact

❑ Thus, algorithm 
prefixAverages1 runs in 
O(n2) time 
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Prefix Averages (Linear)
The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A  new array of n integers O(n)

s  0 O(1)

for i  0 to n − 1 do O(n)

s  s + X[i] O(n)

A[i]  s / (i + 1) O(n)

return A O(1)

Algorithm prefixAverages2 runs in O(n) time 

© 2010 Goodrich, Tamassia
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❑ properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbx
a = alogbx

logba = logxa/logxb

❑ properties of exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

Summations

Logarithms and Exponents

Proof techniques

Basic probability

Math you need to Review

© 2010 Goodrich, Tamassia
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Relatives of Big-Oh

big-Omega

◼ f(n) is (g(n)) if there is a constant c > 0 

and an integer constant n0  1 such that 

f(n)  c‧g(n) for n  n0

big-Theta

◼ f(n) is (g(n)) if there are constants c’ > 0 and c’’ 
> 0 and an integer constant n0  1 such that 
c’‧g(n)  f(n)  c’’‧g(n) for n  n0

© 2010 Goodrich, Tamassia
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Intuition for Asymptotic 
Notation

Big-Oh

◼ f(n) is O(g(n)) if f(n) is asymptotically 
less than or equal to g(n)

big-Omega

◼ f(n) is (g(n)) if f(n) is asymptotically 
greater than or equal to g(n)

big-Theta

◼ f(n) is (g(n)) if f(n) is asymptotically 
equal to g(n)

© 2010 Goodrich, Tamassia
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Example Uses of the 
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0  1 such that f(n) < c‧g(n) for n  n0 

Let c = 5 and n0 = 1

◼ 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c‧g(n) for n  n0

let c = 1 and n0 = 1

◼ 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c‧g(n) for n  n0

let c = 5 and n0 = 1

◼ 5n2 is (n2)

© 2010 Goodrich, Tamassia
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Algorithm Analysis –
Tom’s Rules of Thumb
◼ Start by defining a function that represents the time 

for the thing you are trying to analyze.

◼ Often T(n)

◼ Be sure to state what n is.

◼ Time is worst-case if not specified.

quicksort(A, i, j) {

…

}

bubblesort(A) {

…

}

© 2019 Shermer

Let T(n) be the time to complete 
quicksort on n array elements, 
where n = j-i+1.

Let S(n) be the time to complete 
bubblesort on an array of n 
elements.
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Algorithm Analysis –
Tom’s Rules of Thumb
◼ Work from inner blocks of (pseudo-)code to outer 

blocks.

quicksort(A, i, j) {

pivot = A[i];

for(k = i+1 to j) {

if(pivot > A[k]) {

…

}

else {

…

}

…

}

© 2019 Shermer

Start with these Then do this
Then this …



Analysis of Algorithms 34

Assignments and Function 
Calls
◼ An assignment with no function calls is O(1).

◼ A function call to a known algorithm (not the one you 
are analyzing) takes the known time for that algorithm.

foo(A, n) {

…

k = (j+91)/3; O(1)

m = max(A, n); O(n)    (finding maximum of an array takes linear time)

p = (j – 17) + max(B, n) O(1) + O(n) = O(n)

…

}

© 2019 Shermer
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Recursive Function Calls

◼ A function call to the algorithm you are analyzing takes 
(the function you defined)(some function of n) time.

◼ For example, T(n/2)

foo(A, n) { Define S(n) to be time taken by foo with second 
parameter n

…

foo(A, n-2); S(n-2)

}

bar(A, i, j) { Define T(n) to be time taken by bar with n = j-i+1

m = (i + j) / 2;

bar(A, i, m); T(n/2)

…

}

© 2019 Shermer
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Conditionals

◼ Add up the time in each branch of the conditional.  

◼ The conditional takes the time taken by the condition, 
plus the maximum of the branch times.

foo(A, n) {

…

if( p < A[i] ) { O(1)

… O(n)

}

else {

… O(n2)

} 

}
© 2019 Shermer

The whole if statement 
takes time 
O(1) + max(O(n), O(n2)) 
= O(n2)   
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Loops

◼ Add up the time in the body of the loop.  

◼ Determine how many times t the loop will be executed, 
as a function of your n. Use worst-case estimate.

◼ The time for the loop is t * (time for body)

for(i = 1 to n ) { n iterations

… O(n)

}

i = 0;

while(p < A[i]) {  n iterations

…

i++;

}
© 2019 Shermer

The whole for loop takes 
time 
n * O(n) = O(n2)   
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Triangular Loops

◼ Triangular loops have an inner index that counts up to 
the outer index.

◼ Assume the inner loops have the same number of 
iterations as the outer loop.

for(i = 1 to n ) { n iterations

…

for(j = 1 to i) {     n iterations

…

}

}

❑ This also works for more than two nested loops

© 2019 Shermer
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At the end

◼ Set (the function of n you defined) = the summed-up 
cost of the entire algorithm.

◼ Reminder: Along the way, don’t absorb T(…) factors 
into the big-Oh notation.

◼ If you end up with a recurrence, solve it.

© 2019 Shermer
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At the end

int find(A, i, j, target) { Let T(n) be the time for find where n = j-i+1.

if( i == j) {

if(A[i] == target)

return i O(1)

else

return -1 O(1)

}

m = (i + j) / 2 O(1)

f = find(A, i, m, target)    T(n/2)

if(f > 0) {

return f O(1)

}

return find(A, m+1, j, target) T(n/2)

}

© 2019 Shermer

O(1) O(1)

O(1)

O(1) + 2T(n/2)

T(n) = O(1) +   
2T(n/2)

T(n) is O(n)


