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The Recursion Pattern
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2Recursion

❑ Recursion: when a method calls itself

❑ Classic example: the factorial function:

n! = 1· 2· 3· ··· · (n−1)· n

❑ Recursive definition:

❑ As a C++method:
// recursive factorial function

int  recursiveFactorial(int n) { 

if  (n  ==  0)  return  1; // basis case

else return  n  *  recursiveFactorial(n - 1); // recursive case

}
© 2010 Goodrich, Tamassia



Recursion 3

Content of a Recursive Method

❑ Base case(s)

◼ Values of the input variables for which we perform 
no recursive calls are called base cases (there 
should be at least one base case). 

◼ Every possible chain of recursive calls must
eventually reach a base case.

❑ Recursive calls

◼ Calls to the current method. 

◼ Each recursive call should be defined so that it 
makes progress towards a base case.
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Visualizing Recursion

❑Recursion trace
◼ A box for each 

recursive call

◼ An arrow from each 
caller to callee

◼ An arrow from each 
callee to caller 
showing return value

❑ Example

Recursion 4

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer
call
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Example: English Ruler

❑ Print the ticks and numbers like an English ruler:
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6

Using Recursion

drawTicks(length)
Input: length of a ‘tick’
Output: ruler with tick of the given length in 
the middle and smaller rulers on either side

Recursion© 2010 Stallmann

drawTicks(length) 

if( length > 0 ) then

drawTicks( length − 1 )

draw tick of the given length

drawTicks( length − 1 )
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Recursive Drawing Method 

❑ The drawing method is 
based on the following 
recursive definition

❑ An interval with a 
central tick length L >1 
consists of:

◼ An interval with a central 
tick length L−1

◼ An single tick of length L

◼ An interval with a central 
tick length L−1

drawTicks (3) Output

drawTicks (0)

(previous pattern repeats )

drawOneTick (1)

drawTicks (1)

drawTicks (2)

drawOneTick (2)

drawTicks (2)

drawTicks (1)

drawTicks (0)

drawTicks (0)

drawTicks (0)

drawOneTick (1)

drawOneTick (3)
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C++ Implementation (1)
// draw ruler 

void  drawRuler(int  nInches,  int  majorLength)  {

drawOneTick(majorLength,  0); // draw tick 0 and its label

for  (int i =  1; i <=  nInches;  i++) {

drawTicks(majorLength - 1); // draw ticks for this inch

drawOneTick(majorLength,  i); // draw tick i and its label

}

}

// draw ticks of given length

void  drawTicks(int  tickLength)  { 

if  (tickLength  >  0)  { // stop when length drops to 0

drawTicks(tickLength - 1); // recursively draw left ticks

drawOneTick(tickLength); // draw center tick

drawTicks(tickLength - 1); // recursively draw right ticks

}

}
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C++ Implementation (2)
// draw a tick with no label

void  drawOneTick(int  tickLength)  {  

drawOneTick(tickLength,  - 1);  

}

// draw one tick

void  drawOneTick(int  tickLength,  int  tickLabel)  {

for  (int i =  0; i <  tickLength;  i++) {

cout << "-";

}

if  (tickLabel  >=  0)  {  

cout <<  " "  <<  tickLabel;

}

cout  <<  "\n";

}
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Recursion Examples

Example 3.2 in the text: Programming languages are often defined 

in a recursive way.  We can define an argument list in C++ as 

follows:

argument-list: ε

nonempty-argument-list

nonempty-argument-list: argument

nonempty-argument-list , argument

That is, an argument list consists of either (i) the empty string, (ii) 

an argument, or (iii) a nonempty argument list followed by a 

comma and an argument.

foo(); bar(14); bletch(23.1, ‘a’, 14);
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Example of Linear Recursion

Algorithm LinearSum(A, n):
Input: 
A integer array A and an integer 

n = 1, such that A has at least 
n elements

Output: 
The sum of the first n integers 
in A

if n = 1 then
return A[0]

else
return LinearSum(A, n - 1) + 

A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

© 2010 Goodrich, 
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Reversing an Array

Algorithm ReverseArray(A, i,  j):

Input: An array A and nonnegative integer 
indices i and  j

Output: The reversal of the elements in A 
starting at index i and ending at  j

if i <  j then

Swap A[i] and A[ j]

ReverseArray(A, i + 1,  j - 1)

return
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Using Recursion 13

Defining Arguments for Recursion

❑ In creating recursive methods, it is important 
to define the methods in ways that facilitate 
recursion.

❑ This sometimes requires we define additional 
parameters that are passed to the method.

❑ For example, we defined the array reversal 
method as ReverseArray(A, i,  j), not 
ReverseArray(A).
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Using Recursion14

Computing Powers

❑ The power function, p(x,n)=xn, can be 
defined recursively:

❑ This leads to an power function that runs in 
O(n) time (for we make n recursive calls).

❑ We can do better than this, however.





−

=
=

else)1,(

0 if1
),(

nxpx

n
nxp

© 2010 Goodrich, Tamassia



Using Recursion15

Recursive Squaring
❑ We can derive a more efficient linearly 

recursive algorithm by using repeated squaring:

❑ For example,
24 =  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25 =  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32

26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64

27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.

© 2010 Goodrich, Tamassia

𝑝 𝑥, 𝑛 = ൞

1 if 𝑛 = 0
𝑥 ∙ 𝑝(𝑥, Τ𝑛 − 1 2)2 if 𝑛 > 0 is odd

𝑝(𝑥, Τ𝑛 2)2 if 𝑛 > 0 is even
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Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value xn

if n = 0 then

return 1

if n is odd then

y  = Power(x, (n - 1)/ 2)

return x · y ·y

else

y = Power(x, n/ 2)

return y · y
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Analysis

Algorithm Power(x, n):
Input: A number x and 

integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y  = Power(x, (n - 1)/ 2)
return x · y · y

else
y = Power(x, n/ 2)
return y · y

It is important that we 
use a variable twice 
here rather than calling 
the method twice.

Each time we make a 
recursive call we halve 
the value of n; hence, 
we make log n recursive 
calls. That is, this 
method runs in O(log n) 
time.
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Tail Recursion
❑ Tail recursion occurs when a linearly recursive 

method makes its recursive call as its last step.
❑ The array reversal method is an example.
❑ Such methods can be easily converted to non-

recursive methods (which saves on some resources).
❑ Example:

Algorithm IterativeReverseArray(A, i, j ):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at 

index i and ending at j
while i <  j do

Swap A[i ] and A[ j ]
i  = i + 1
j  = j - 1

return
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Binary Recursion
❑ Binary recursion occurs whenever there are two

recursive calls for each non-base case.

❑ Example: the DrawTicks method for drawing 
ticks on an English ruler.
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Using Recursion 20

A Binary Recursive Method for 
Drawing Ticks

// draw a tick with no label
public static void  drawOneTick(int  tickLength)  {  drawOneTick(tickLength,  - 1);  }

// draw one tick
public static void  drawOneTick(int  tickLength,  int  tickLabel)  {

for  (int i =  0; i <  tickLength;  i++)

System.out.print("-");

if  (tickLabel  >=  0)  System.out.print(" "  +  tickLabel);
System.out.print("\n");

}
public static void  drawTicks(int  tickLength)  {  // draw ticks of given length

if  (tickLength  >  0)  { // stop when length drops to 0
drawTicks(tickLength- 1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength- 1); // recursively draw right ticks

}
}
public static void  drawRuler(int  nInches,  int  majorLength)  {  // draw ruler

drawOneTick(majorLength,  0); // draw tick 0 and its label
for  (int i =  1; i <=  nInches;  i++) {

drawTicks(majorLength- 1); // draw ticks for this inch
drawOneTick(majorLength,  i); // draw tick i and its label

}
}

Note the two 
recursive calls
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Another Binary Recusive Method
❑ Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i ]
return BinarySum(A, i, ⌊n/ 2⌋) + BinarySum(A, i + ⌊n/ 2⌋, ⌈n/ 2⌉)

❑ Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1
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Using Recursion 22

Computing Fibonacci Numbers
❑ Fibonacci numbers are defined recursively:

F0 =  0

F1 =  1

Fi =  Fi-1
+ Fi-2 for i > 1.

❑ Recursive algorithm (first attempt):
Algorithm BinaryFib(k):

Input: Nonnegative integer k

Output: The kth Fibonacci number Fk

if k = 1 then

return k

else

return BinaryFib(k - 1) + BinaryFib(k - 2)
© 2010 Goodrich, Tamassia
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Analysis

❑ Let nk be the number of recursive calls by BinaryFib(k)

◼ n0 = 1

◼ n1 = 1

◼ n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3

◼ n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5

◼ n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9

◼ n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15

◼ n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25

◼ n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41

◼ n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

❑ Note that nk at least doubles every other time

❑ That is, nk > 2k/2. It is exponential!
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A Better Fibonacci Algorithm 

❑ Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk , Fk−1)

if k ≤ 1 then
return (k, 0)

else
(i,  j) = LinearFibonacci(k − 1)
return (i +j, i)

❑ LinearFibonacci makes k−1 recursive calls

© 2010 Goodrich, Tamassia
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Multiple Recursion

❑Motivating example: 

◼ summation puzzles

 pot + pan = bib 321 + 375 = 696

 dog + cat = pig 167 + 380 = 547

 boy + girl = baby

❑Multiple recursion: 

◼ makes potentially many recursive calls

◼ not just one or two
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Algorithm for Multiple Recursion
Algorithm PuzzleSolve(S,U):

Input: Sequence S, and set U (universe of elements to test)

Output:  Solution to problem encoded as a sequence

for all e in U do

Remove e from U {e is now being used}

Add e to the end of S

if U is empty then

if S solves the puzzle then

return S  {solution found}

else

S' = PuzzleSolve(S,U)

if S'  Ø then

return S'

Add e back to U {e is now unused}

Remove e from the end of S

return Ø {solution not found}

© 2020 Goodrich, Tamassia, 
Shermer



Example

© 2010 Stallmann 27Using Recursion

cbb + ba = abc a,b,c stand for 7,8,9; not 
necessarily in that order

[] {a,b,c}

[a] {b,c}
a=7

[b] {a,c}
b=7

[c] {a,b}
c=7

[ab] {c}
a=7,b=8
c=9

[ac] {b}
a=7,c=8
b=9

[ba] {c}
b=7,a=8
c=9

[bc] {a}
b=7,c=8
a=9

[ca] {b}
c=7,a=8
b=9

[cb] {a}
c=7,b=8
a=9

might be able to
stop sooner

799 + 98 = 897
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Recursion as a Black Box

❑ In solving a problem of some size n, it is often helpful 
to think of recursion as a “black box” that solves 
smaller instances of the problem.

❑ In this method, one imagines a smaller problem(s) of 
the same type that would help solve the problem of 
size n.

❑ By the magic of recursion, you can assume that the 
smaller problem(s) are solved, and use their solution.

❑ You must also verify that you can solve the problem 
some other way for small n (like n = 0 or 1 or 2).

© 2019 Shermer
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Black Box Recursion:
Insertion Sort

❑ Our problem is to sort a sequence of n integers.

❑ If we had the first n-1 of them sorted, then we could 
simply insert the last one at the appropriate place in 
this order.

© 2019 Shermer

❑ By recursion, we can 
magically sort the first n-1 
numbers.

❑ We verify that we can sort 
a sequence of length 1 by 
simply leaving it alone.

insertionSort(A, n)

if(n==1)

return

insertionSort(A, n-1)

insert(A[n], A, n)
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Black Box Recursion:
Merge Sort

❑ Our problem is to sort a sequence of n integers.

❑ If we divide the input into two subsequences, and had 
both of these subsequences sorted, we could simply 
merge the two subsequences.

© 2019 Shermer

❑ By recursion, we can 
magically sort the two 
subsequences.

❑ We can sort a sequence of 
length 1 by simply leaving 
it alone.

mergeSort(T)

if(n==1) 

return T

T1, T2 = divide(T)

S1 = mergeSort(T1)

S2 = mergeSort(T2)

return merge(S1, S2)
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Black Box Recursion:
Convex Hulls

❑ Our problem is to find the convex hull of n points.  
This is the smallest convex polygon that contains the 
points: the “boundary” of the points.  It is an ordered 
list of points.

© 2019 Shermer
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Black Box Recursion:
Convex Hulls

❑ Idea: divide the points 
into a left half and a right 
half.

❑ Then compute the convex 
hulls of both halves.
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Black Box Recursion:
Convex Hulls

❑ Merge the two hulls by 
finding a top bridge edge 
and a bottom bridge 
edge.

❑ Then remove the parts in 
the middle.
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Black Box Recursion:
Convex Hulls

❑ The base case, divide, and merge steps are more 
complicated for convexHull, but it’s the same basic 
recursion technique as mergeSort. 

❑ This is a pattern called divide-and-conquer.

© 2019 Shermer

mergeSort(T)

if(n==1) 

return T

T1, T2 = divide(T)

S1 = mergeSort(T1)

S2 = mergeSort(T2)

return merge(S1, S2)

convexHull(P)

if(|P|≤ 3) 

return ccw(P)

P1, P2 = divide(P)

C1 = convexHull(P1)

C2 = convexHull(P2)

return merge(C1, C2)


