
Recursion

1Recursion© 2010 Goodrich, Tamassia

Section 3.5

The Recursion Pattern





−

=
=

elsenfn

n
nf

)1(

0 if1
)(

2Recursion

❑ Recursion: when a method calls itself

❑ Classic example: the factorial function:

n! = 1· 2· 3· ··· · (n−1)· n

❑ Recursive definition:

❑ As a C++method:
// recursive factorial function

int recursiveFactorial(int n) {

if (n == 0) return 1; // basis case

else return n * recursiveFactorial(n - 1); // recursive case

}
© 2010 Goodrich, Tamassia

Recursion 3

Content of a Recursive Method

❑ Base case(s)

◼ Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

◼ Every possible chain of recursive calls must
eventually reach a base case.

❑ Recursive calls

◼ Calls to the current method.

◼ Each recursive call should be defined so that it
makes progress towards a base case.

© 2010 Goodrich, Tamassia

Visualizing Recursion

❑Recursion trace
◼ A box for each

recursive call

◼ An arrow from each
caller to callee

◼ An arrow from each
callee to caller
showing return value

❑ Example

Recursion 4

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)

return 1

call

call

call

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer
call

© 2010 Goodrich, Tamassia

Recursion 5

Example: English Ruler

❑ Print the ticks and numbers like an English ruler:

© 2010 Goodrich, Tamassia

6

Using Recursion

drawTicks(length)
Input: length of a ‘tick’
Output: ruler with tick of the given length in
the middle and smaller rulers on either side

Recursion© 2010 Stallmann

drawTicks(length)

if(length > 0) then

drawTicks(length − 1)

draw tick of the given length

drawTicks(length − 1)

Recursion 7

Recursive Drawing Method

❑ The drawing method is
based on the following
recursive definition

❑ An interval with a
central tick length L >1
consists of:

◼ An interval with a central
tick length L−1

◼ An single tick of length L

◼ An interval with a central
tick length L−1

drawTicks (3) Output

drawTicks (0)

(previous pattern repeats)

drawOneTick (1)

drawTicks (1)

drawTicks (2)

drawOneTick (2)

drawTicks (2)

drawTicks (1)

drawTicks (0)

drawTicks (0)

drawTicks (0)

drawOneTick (1)

drawOneTick (3)

© 2010 Goodrich, Tamassia

Recursion 8

C++ Implementation (1)
// draw ruler

void drawRuler(int nInches, int majorLength) {

drawOneTick(majorLength, 0); // draw tick 0 and its label

for (int i = 1; i <= nInches; i++) {

drawTicks(majorLength - 1); // draw ticks for this inch

drawOneTick(majorLength, i); // draw tick i and its label

}

}

// draw ticks of given length

void drawTicks(int tickLength) {

if (tickLength > 0) { // stop when length drops to 0

drawTicks(tickLength - 1); // recursively draw left ticks

drawOneTick(tickLength); // draw center tick

drawTicks(tickLength - 1); // recursively draw right ticks

}

}
© 2010 Goodrich, Tamassia

C++ Implementation (2)
// draw a tick with no label

void drawOneTick(int tickLength) {

drawOneTick(tickLength, - 1);

}

// draw one tick

void drawOneTick(int tickLength, int tickLabel) {

for (int i = 0; i < tickLength; i++) {

cout << "-";

}

if (tickLabel >= 0) {

cout << " " << tickLabel;

}

cout << "\n";

}

Recursion 9© 2010 Goodrich, Tamassia

Recursion Examples

Example 3.2 in the text: Programming languages are often defined

in a recursive way. We can define an argument list in C++ as

follows:

argument-list: ε

nonempty-argument-list

nonempty-argument-list: argument

nonempty-argument-list , argument

That is, an argument list consists of either (i) the empty string, (ii)

an argument, or (iii) a nonempty argument list followed by a

comma and an argument.

foo(); bar(14); bletch(23.1, ‘a’, 14);

Recursion 10© 2019 Shermer

Using Recursion 11

Example of Linear Recursion

Algorithm LinearSum(A, n):
Input:
A integer array A and an integer

n = 1, such that A has at least
n elements

Output:
The sum of the first n integers
in A

if n = 1 then
return A[0]

else
return LinearSum(A, n - 1) +

A[n - 1]

Example recursion trace:

LinearSum(A,5)

LinearSum(A,1)

LinearSum(A,2)

LinearSum(A,3)

LinearSum(A,4)

call

call

call

call return A[0] = 4

return 4 + A[1] = 4 + 3 = 7

return 7 + A[2] = 7 + 6 = 13

return 13 + A[3] = 13 + 2 = 15

call return 15 + A[4] = 15 + 5 = 20

© 2010 Goodrich,
Tamassia

Using Recursion 12

Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer
indices i and j

Output: The reversal of the elements in A
starting at index i and ending at j

if i < j then

Swap A[i] and A[j]

ReverseArray(A, i + 1, j - 1)

return

© 2010 Goodrich, Tamassia

Using Recursion 13

Defining Arguments for Recursion

❑ In creating recursive methods, it is important
to define the methods in ways that facilitate
recursion.

❑ This sometimes requires we define additional
parameters that are passed to the method.

❑ For example, we defined the array reversal
method as ReverseArray(A, i, j), not
ReverseArray(A).

© 2010 Goodrich, Tamassia

Using Recursion14

Computing Powers

❑ The power function, p(x,n)=xn, can be
defined recursively:

❑ This leads to an power function that runs in
O(n) time (for we make n recursive calls).

❑ We can do better than this, however.





−

=
=

else)1,(

0 if1
),(

nxpx

n
nxp

© 2010 Goodrich, Tamassia

Using Recursion15

Recursive Squaring
❑ We can derive a more efficient linearly

recursive algorithm by using repeated squaring:

❑ For example,
24 = 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16

25 = 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32

26 = 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64

27 = 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128.

© 2010 Goodrich, Tamassia

𝑝 𝑥, 𝑛 = ൞

1 if 𝑛 = 0
𝑥 ∙ 𝑝(𝑥, Τ𝑛 − 1 2)2 if 𝑛 > 0 is odd

𝑝(𝑥, Τ𝑛 2)2 if 𝑛 > 0 is even

Using Recursion 16

Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value xn

if n = 0 then

return 1

if n is odd then

y = Power(x, (n - 1)/ 2)

return x · y ·y

else

y = Power(x, n/ 2)

return y · y
© 2010 Goodrich, Tamassia

Using Recursion 17

Analysis

Algorithm Power(x, n):
Input: A number x and

integer n = 0
Output: The value xn

if n = 0 then
return 1

if n is odd then
y = Power(x, (n - 1)/ 2)
return x · y · y

else
y = Power(x, n/ 2)
return y · y

It is important that we
use a variable twice
here rather than calling
the method twice.

Each time we make a
recursive call we halve
the value of n; hence,
we make log n recursive
calls. That is, this
method runs in O(log n)
time.

© 2010 Goodrich, Tamassia

Using Recursion 18

Tail Recursion
❑ Tail recursion occurs when a linearly recursive

method makes its recursive call as its last step.
❑ The array reversal method is an example.
❑ Such methods can be easily converted to non-

recursive methods (which saves on some resources).
❑ Example:

Algorithm IterativeReverseArray(A, i, j):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at

index i and ending at j
while i < j do

Swap A[i] and A[j]
i = i + 1
j = j - 1

return

© 2010 Goodrich, Tamassia

Using Recursion 19

Binary Recursion
❑ Binary recursion occurs whenever there are two

recursive calls for each non-base case.

❑ Example: the DrawTicks method for drawing
ticks on an English ruler.

© 2010 Goodrich, Tamassia

Using Recursion 20

A Binary Recursive Method for
Drawing Ticks

// draw a tick with no label
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, - 1); }

// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {

for (int i = 0; i < tickLength; i++)

System.out.print("-");

if (tickLabel >= 0) System.out.print(" " + tickLabel);
System.out.print("\n");

}
public static void drawTicks(int tickLength) { // draw ticks of given length

if (tickLength > 0) { // stop when length drops to 0
drawTicks(tickLength- 1); // recursively draw left ticks
drawOneTick(tickLength); // draw center tick
drawTicks(tickLength- 1); // recursively draw right ticks

}
}
public static void drawRuler(int nInches, int majorLength) { // draw ruler

drawOneTick(majorLength, 0); // draw tick 0 and its label
for (int i = 1; i <= nInches; i++) {

drawTicks(majorLength- 1); // draw ticks for this inch
drawOneTick(majorLength, i); // draw tick i and its label

}
}

Note the two
recursive calls

© 2010 Goodrich, Tamassia

Using Recursion21

Another Binary Recusive Method
❑ Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i

if n = 1 then
return A[i]
return BinarySum(A, i, ⌊n/ 2⌋) + BinarySum(A, i + ⌊n/ 2⌋, ⌈n/ 2⌉)

❑ Example trace:

3, 1

2, 2

0, 4

2, 11, 10, 1

0, 8

0, 2

7, 1

6, 2

4, 4

6, 15, 1

4, 2

4, 1

© 2010 Goodrich, Tamassia

Using Recursion 22

Computing Fibonacci Numbers
❑ Fibonacci numbers are defined recursively:

F0 = 0

F1 = 1

Fi = Fi-1
+ Fi-2 for i > 1.

❑ Recursive algorithm (first attempt):
Algorithm BinaryFib(k):

Input: Nonnegative integer k

Output: The kth Fibonacci number Fk

if k = 1 then

return k

else

return BinaryFib(k - 1) + BinaryFib(k - 2)
© 2010 Goodrich, Tamassia

Using Recursion 23

Analysis

❑ Let nk be the number of recursive calls by BinaryFib(k)

◼ n0 = 1

◼ n1 = 1

◼ n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3

◼ n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5

◼ n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9

◼ n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15

◼ n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25

◼ n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41

◼ n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

❑ Note that nk at least doubles every other time

❑ That is, nk > 2k/2. It is exponential!

© 2010 Goodrich, Tamassia

Using Recursion 24

A Better Fibonacci Algorithm

❑ Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (Fk , Fk−1)

if k ≤ 1 then
return (k, 0)

else
(i, j) = LinearFibonacci(k − 1)
return (i +j, i)

❑ LinearFibonacci makes k−1 recursive calls

© 2010 Goodrich, Tamassia

Using Recursion 25

Multiple Recursion

❑Motivating example:

◼ summation puzzles

 pot + pan = bib 321 + 375 = 696

 dog + cat = pig 167 + 380 = 547

 boy + girl = baby

❑Multiple recursion:

◼ makes potentially many recursive calls

◼ not just one or two

© 2010 Goodrich, Tamassia

Using Recursion 26

Algorithm for Multiple Recursion
Algorithm PuzzleSolve(S,U):

Input: Sequence S, and set U (universe of elements to test)

Output: Solution to problem encoded as a sequence

for all e in U do

Remove e from U {e is now being used}

Add e to the end of S

if U is empty then

if S solves the puzzle then

return S {solution found}

else

S' = PuzzleSolve(S,U)

if S'  Ø then

return S'

Add e back to U {e is now unused}

Remove e from the end of S

return Ø {solution not found}

© 2020 Goodrich, Tamassia,
Shermer

Example

© 2010 Stallmann 27Using Recursion

cbb + ba = abc a,b,c stand for 7,8,9; not
necessarily in that order

[] {a,b,c}

[a] {b,c}
a=7

[b] {a,c}
b=7

[c] {a,b}
c=7

[ab] {c}
a=7,b=8
c=9

[ac] {b}
a=7,c=8
b=9

[ba] {c}
b=7,a=8
c=9

[bc] {a}
b=7,c=8
a=9

[ca] {b}
c=7,a=8
b=9

[cb] {a}
c=7,b=8
a=9

might be able to
stop sooner

799 + 98 = 897

Using Recursion 28

Recursion as a Black Box

❑ In solving a problem of some size n, it is often helpful
to think of recursion as a “black box” that solves
smaller instances of the problem.

❑ In this method, one imagines a smaller problem(s) of
the same type that would help solve the problem of
size n.

❑ By the magic of recursion, you can assume that the
smaller problem(s) are solved, and use their solution.

❑ You must also verify that you can solve the problem
some other way for small n (like n = 0 or 1 or 2).

© 2019 Shermer

Using Recursion 29

Black Box Recursion:
Insertion Sort

❑ Our problem is to sort a sequence of n integers.

❑ If we had the first n-1 of them sorted, then we could
simply insert the last one at the appropriate place in
this order.

© 2019 Shermer

❑ By recursion, we can
magically sort the first n-1
numbers.

❑ We verify that we can sort
a sequence of length 1 by
simply leaving it alone.

insertionSort(A, n)

if(n==1)

return

insertionSort(A, n-1)

insert(A[n], A, n)

Using Recursion 30

Black Box Recursion:
Merge Sort

❑ Our problem is to sort a sequence of n integers.

❑ If we divide the input into two subsequences, and had
both of these subsequences sorted, we could simply
merge the two subsequences.

© 2019 Shermer

❑ By recursion, we can
magically sort the two
subsequences.

❑ We can sort a sequence of
length 1 by simply leaving
it alone.

mergeSort(T)

if(n==1)

return T

T1, T2 = divide(T)

S1 = mergeSort(T1)

S2 = mergeSort(T2)

return merge(S1, S2)

Using Recursion 31

Black Box Recursion:
Convex Hulls

❑ Our problem is to find the convex hull of n points.
This is the smallest convex polygon that contains the
points: the “boundary” of the points. It is an ordered
list of points.

© 2019 Shermer

Using Recursion 32

Black Box Recursion:
Convex Hulls

❑ Idea: divide the points
into a left half and a right
half.

❑ Then compute the convex
hulls of both halves.

© 2019 Shermer

Using Recursion 33

Black Box Recursion:
Convex Hulls

❑ Merge the two hulls by
finding a top bridge edge
and a bottom bridge
edge.

❑ Then remove the parts in
the middle.

© 2019 Shermer

Using Recursion 34

Black Box Recursion:
Convex Hulls

❑ The base case, divide, and merge steps are more
complicated for convexHull, but it’s the same basic
recursion technique as mergeSort.

❑ This is a pattern called divide-and-conquer.

© 2019 Shermer

mergeSort(T)

if(n==1)

return T

T1, T2 = divide(T)

S1 = mergeSort(T1)

S2 = mergeSort(T2)

return merge(S1, S2)

convexHull(P)

if(|P|≤ 3)

return ccw(P)

P1, P2 = divide(P)

C1 = convexHull(P1)

C2 = convexHull(P2)

return merge(C1, C2)

