A
N

Recursion

Section 3.5

© 2010 Goodrich, Tamassia

Recursion

AN

The Recursion Pattern

N

a Recursion: when a method calls itself
a Classic example: the factorial function:

nl-=1:=2+3==(n=-1)*n
a Recursive definition:

£ = 1 Ifn=0
) _{n- f(n-1) else

a As a C++method:
Il recursive factorial function
int recursiveFactorial(int n) {
if (n == 0) return 1; // basis case
else return n * recursiveFactorial(n - 1);// recursive case

}

© 2010 Goodrich, Tamassia Recursion

Content of a Recursive Method

N

0 Base case(s)

= Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

= Every possible chain of recursive calls must
eventually reach a base case.
a Recursive calls
s Calls to the current method.

= Each recursive call should be defined so that it
makes progress towards a base case.

© 2010 Goodrich, Tamassia Recursion 3

N

Visualizing Recursion

1 Recursion trace a1 Example

s A bOX fOI‘ eaCh \Call return 4*6 = 24 ——» final answer
recursive Ca” [recursiveFactoriaI (4) \

= An arrow from each | return 32 = 6
Ca||el‘ tO Ca”ee [recursiveFactorial (3) \

= An arrow from each o return 2+1 = 2
Ca”ee to Ca”er [recursiveFactorial (2) \
showing return value oo et 471 1

recursiveFactorial (1)

=

[recursiveFactoriaI (0)

|

return 1

© 2010 Goodrich, Tamassia Recursion 4

Example: English Ruler

N

a Print the ticks and numbers like an English ruler:

I 0 0
1
1 - 2
-3

-2 e 1

© 2010 Goodrich, Tamassia Recursion

Using Recursion

N

L
drawTicks(length)
Input: length of a ‘tick’
Output: ruler with tick of the given length in
the middle and smaller rulers on either side

drawTicks(length)

if(length > 0) then

\\draw tick of the given length

P - , ——drawTicks(length — 1)

© 2010 Stallmann Recursion 6

N

Q The drawing method is
based on the following
recursive definition

a An interval with a
central tick length L >1
consists of:

= An interval with a central
tick length L-1

= An single tick of length L

= An interval with a central
tick length L-1

© 2010 Goodrich, Tamassia

Recursive Drawing Method

(drawTicks (3))
¢—»(drawTicks (2))
o—»(drawTicks (1))

< drawTicks (0)

o drawTicks (0)

&—»(drawTicks (1))

¢ drawTicks (0)

drawTicks (0)
e—» drawOneTick (3)

&—» drawOneTick (1) —»

e&—» drawOneTick (2) ———

&—» drawOneTick (1) —»

.
>

o drawTicks (2)

’ (previous pattern repeats)

Recursion

N

C++ Implementation (1)

void drawRuler(int ninches, int majorLength) {
drawOneTick(majorLength, 0);
for (inti= 1;i<= ninches; i++){
drawTicks(majorLength - 1);
drawOneTick(majorLength, i);

void drawTicks(int tickLength) {
If (tickLength > 0) {
drawTicks(tickLength - 1);
drawOneTick(tickLength);
drawTicks(tickLength - 1);

}
}

© 2010 Goodrich, Tamassia Recursion

C++ Implementation (2)

N

void drawOneTick(int tickLength) {
drawOneTick(tickLength, - 1);

}

void drawOneTick(int tickLength, int tickLabel) {
for (inti= 0;i< tickLength; i++) {
cout << -

}

If (tickLabel >= 0) {
cout << "" << tickLabel:

}

cout << "\n":

}

© 2010 Goodrich, Tamassia Recursion

Recursion Examples

N

Example 3.2 in the text: Programming languages are often defined
In a recursive way. We can define an argument list in C++ as
follows:

argument-list: €
nonempty-argument-list

nonempty-argument-list: argument
nonempty-argument-list , argument

That is, an argument list consists of either (i) the empty string, (ii)
an argument, or (iii) a nonempty argument list followed by a
comma and an argument.

foo(); bar(14), bletch(23.1, ‘a’, 14);

© 2019 Shermer Recursion 10

N
\J

Example of Linear Recursion

Algorithm LinearSum(4, n): Example recursion trace:
Input:
A integer array A and an integer \call return 15 + A[4] = 15 + 5 = 20
n =1, such that A4 has at least ([Lincarsum(a5) \
n elements \call return 13 + A[3]=13+2 =15
OUtPUt: [LinearSum (A,4) \
T_heAsum of the first nintegers \cal return 7.+ A2] = 7+ 6 = 13
N LinearSum(A,3
if n= 1 then [\c(all) returh?
return /4[0] [LinearSum (A, 2) \
EIse \call return A[0] = 4
return LinearSum(A4, n-1) + ([Linearsum(a,1)
An-1]

© 2010 Goodrich,

Tamassia Using Recursion 11

N

Reversing an Array

Algorithm ReverseArray(A4, /,)):

Input: An array A and nonnegative integer
indices /and J

Output: The reversal of the elements in 4

starting at index 7/and ending at J
iIf / < jthen
Swap A[/] and A J]
ReverseArray(A, 7+ 1, j-1)
return

Using Recursion © 2010 Goodrich, Tamassia 12

N

Defining Arguments for Recursion

0 In creating recursive methods, it is important
to define the methods in ways that facilitate
recursion.

0 This sometimes requires we define additional

parameters that are passed to the method.

0 For example, we defined the array reversal
method as ReverseArray(A4, /, j), not
ReverseArray(A).

Using Recursion © 2010 Goodrich, Tamassia 13

N

Computing Powers

0 The power function, p(x,n)=x", can be
defined recursively:

1 1fn=0
p(x,n) =
X-p(x,n=1) else

0 This leads to an power function that runs in
O(n) time (for we make n recursive calls).

0 We can do better than this, however.

14 © 2010 Goodrich, Tamassia Using Recursion

N

Recursive Squaring

0 We can derive a more efficient linearly
recursive algorithm by using repeated squaring:

(1 ifn=0
p(x,n) = {x-p(x,(n—1)/2)* ifn>0isodd
p(x,n/2)* if n > 0is even

\

0 For example,
24 = 2(4/2)2 — (24/2)2 — (22)2 =42=16
5= 21+(4/2)2 = 2(24/2)2 e 2(22)2 = 2(42) =32
6= 2(6/2)2 — (26/2)2 — (23)2 =82=64
27 =91+(6/2)2 = 2(26/2)2 — 2(23)2 — 2(82) = 128.

15 © 2010 Goodrich, Tamassia Using Recursion

N

Recursive Squaring Method

Algorithm Power(x, n):
Input: A number xand integer n =0
Output: The value x”
if n=0 then

return 1

iIf nis odd then
y =Power(x, (n-1)/2)
return x: y'y

else
y = Power(x, n/2)
return y - y

Using Recursion © 2010 Goodrich, Tamassia

16

Analysis

N

Algorithm Power(x, n):

Input: A number x and
integer n =0 Each time we make a

Output: The value x” recursive call we halve

if =0 then the value of n; hence:
we make log n recursive
return 1 calls. That is, this

if nis odd the method runs in O(log n)
y = Power(x, time.
return x
else It is important that we
_ use a variable twice
y = Power(x, 1/'2) here rather than calling
return y * y the method twice.

Using Recursion © 2010 Goodrich, Tamassia 17

Tail Recursion

N

a Tail recursion occurs when a linearly recursive
method makes its recursive call as its last step.

0 The array reversal method is an example.

0 Such methods can be easily converted to non-
recursive methods (which saves on some resources).

0 Example:
Algorithm IterativeReverseArray(A4, /, j):
Input: An array A and nonnegative integer indices /and j

Output: The reversal of the elements in A starting at
index /and ending at j

while /< jdo
Swap A[/]and Al j]
[=7i+1
J =J-1

return

Using Recursion © 2010 Goodrich, Tamassia 18

N

Binary Recursion

0 Binary recursion occurs whenever there are two
recursive calls for each non-base case.

0 Example: the DrawTicks method for drawing
ticks on an English ruler.

Using Recursion © 2010 Goodrich, Tamassia 19

A Binary Recursive Method for

N

Drawing Ticks

// draw a tick with no label
public static void drawOneTick(int tickLength) { drawOneTick(tickLength, -1); }
// draw one tick
public static void drawOneTick(int tickLength, int tickLabel) {
for (inti= 0;1< tickLength; i++)
System.out.print("-");

System.out.print("\n");
}

public static void drawTicks(int tickLength)
if (tickLength > 0) {
drawTicks(tickLength- 1);
drawOneTick(tickLength);
drawTicks(tickLength- 1);

// recursively draw right ticks

}
}

public static void drawRuler(int ninches, int majorLength) { // draw ruler
drawOneTick(majorLength, 0); //draw tick 0 and its label
for (inti= 1;i<= ninches; i++) {
drawTicks(majorLength- 1); // draw ticks for this inch
drawOneTick(majorLength, i); //draw tickiand its label

}
Usi}\g Recursion © 2010 Goodrich, Tamassia

if (tickLabel >= 0) System.out.print(" " + tickLabel); NOTC The +wo
recursive calls

20

Another Binary Recusive Method

a Problem: add all the numbers in an integer array A:
Algorithm BinarySum(A4, / n):
Input: An array A and integers /and n
Output: The sum of the nintegers in A starting at index /7
if =1 then
return A[/]
return BinarySum(A, j |n/2]) + BinarySum(A, 7+ |n/ 2|, [n/2])

N

o Example trace:

0, 4 4, 4
0, 2 2, 2 4, 2 6, 2

21 © 2010 Goodrich, Tamassia Using Recursion

N

Computing Fibonacci Numbers

0 Fibonacci numbers are defined recursively:
Fy=0
F =1
F=F_ *F, fori>]l.

0 Recursive algorithm (first attempt):
Algorithm BinaryFib(k):
Input: Nonnegative integer k
Output: The kth Fibonacci number F),
if £ =1 then
return k

else
return BinaryFib(k - 1) + BinaryFib(k - 2)

Using Recursion © 2010 Goodrich, Tamassia 22

Analysis

N

Q Let n, be the number of recursive calls by BinaryFib(k)
m =1
m /=1
s =M+ m+1=1+1+1=3
m =N+ n+1=3+1+1=5
s B, =m+n+1=5+3+1=9
m k=m+m+1=9+5+1=15
m =N+ m+1=15+9+1=25
m b,=nN+n+1=25+15+1=41
m g=m+n+1=41+25+1=67.
a Note that n, at least doubles every other time
a Thatis, n, > 2¥2, It is exponential!

Using Recursion © 2010 Goodrich, Tamassia 23

A Better Fibonacci Algorithm

N

a Use linear recursion instead

Algorithm LinearFibonacci(k):

Input: A nonnegative integer k

Output: Pair of Fibonacci numbers (F,, F,_;)

iIf K <1 then
return (k, 0)

else
(i, j) = LinearFibonacci(k- 1)
return (i +j, i)

a LinearFibonacci makes k-1 recursive calls

Using Recursion © 2010 Goodrich, Tamassia 24

N

Multiple Recursion

0 Motivating example:

= summation puzzles
* pot + pan = bib 321 + 375 = 696

* dog + cat = pig 167 + 380 = 547
* boy + girl = baby
0 Multiple recursion:
= makes potentially many recursive calls
= Not just one or two

Using Recursion © 2010 Goodrich, Tamassia

25

N

Algorithm for Multiple Recursion

L
Algorithm PuzzleSolve(S,U):
Input: Sequence S, and set U (universe of elements to test)
Output: Solution to problem encoded as a sequence

forall einUdo
Remove e from U {e is now being used}
Add e tothe end of S

if Uis empty then
If S solves the puzzle then

return S {solution found}
else
S' = PuzzleSolve(S,U)
If S'# @ then
return S'
Add e back to U {e is now unused}
Remove e from the end of S
return @ {solution not found}
Using Recursion © 2020 Goodrich, Tamassia,

Shermer

26

N
\J

Example

cbb + ba = abc a,b,c stand for 7,8,9; not
799 + 98 = 897 necessarily in that order
[]1{a,b,c}
/ v \
[a] {b c} [b] {a,c} [c] {a,b}
b=7 c=7
/ \ x/ \
[ab] {c} [ac] {b} [ca] {b} [cb] {a}
a=7/,b=8 a=7,c=8 c=7,a=8 c=7,b=8
c=9 b=9 b=9 a=9
[ba] {c} [bc] {a} _
b=7,a=8 b=7,c=8 might be able to
c=9 a=9 stop sooner

Using Recursion

© 2010 Stallmann

27

Recursion as a Black Box

N

0 In solving a problem of some size n, it is often helpful
to think of recursion as a “black box” that solves
smaller instances of the problem.

0 In this method, one imagines a smaller problem(s) of
the same type that would help solve the problem of
size n.

0O By the magic of recursion, you can assume that the
smaller problem(s) are solved, and use their solution.

0 You must also verify that you can solve the problem
some other way for small n (like n = 0 or 1 or 2).

Using Recursion © 2019 Shermer 28

Black Box Recursion:
Insertion Sort

N

0 Our problem is to sort a sequence of n integers.

a If we had the first n-1 of them sorted, then we could
simply insert the last one at the appropriate place in \

this order.

Q By recursion, we can insertionSort(A, n)
magically sort the first n-1 W if(n==1)
numbers. >< return

insertionSort(A, n-1)

0 We verify that we can sort

a sequence of length 1 by insert(A[n], A, n)

simply leaving it alone.

Using Recursion © 2019 Shermer 29

Black Box Recursion:

Merge Sort

0 Our problem is to sort a sequence of n integers.

N

both of these subsequences sorted, we could simply
merge the two subsequences. T~

0 If we divide the input into two subsequences, and had

Q By recursion, we can mergeSort(T)

magically sort the two X W if(n==1)

subsequences. return T

0 We can sort a sequence of Ty, Tp = divide(T)

W)
length 1 by simply leaving \21 - mergezort(?)
it alone. 2 = mergeSort(T,)
return merge(S,, S,)

)

Using Recursion © 2019 Shermer

30

Black Box Recursion:
Convex Hulls

N

QO Our problem is to find the convex hull of n points.
This is the smallest convex polygon that contains the
points: the “boundary” of the points. It is an ordered
list of points.

Using Recursion © 2019 Shermer 31

Black Box Recursion:

Convex Hulls o
% ©
0 Idea: divide the points ° o
into a left half and a right © 5
half. o

0 Then compute the convex
hulls of both halves.

Using Recursion © 2019 Shermer

Black Box Recursion:

Convex Hulls

QO Merge the two hulls by
finding a top bridge edge
and a bottom bridge
edge.

N

0 Then remove the parts in
the middle.

Using Recursion © 2019 Shermer 33

Black Box Recursion:
Convex Hulls

b convexHull(P) mergeSort(T)
if(|P|< 3) if(n==1)
return ccw(P) return T
P,, P, = divide(P) T, T, = divide(T)
C, = convexHull(P,) S, = mergeSort(T,)
C, = convexHull(P,) S, = mergeSort(T,)
return merge(C,, C,) return merge(S,, S,)

0 The base case, divide, and merge steps are more
complicated for convexHull, but it's the same basic
recursion technique as mergeSort.

a This is a pattern called divide-and-conquer.

Using Recursion © 2019 Shermer

