
© 2019 Shermer, based on
Goodrich, Tamassia, and Mount Linked Lists 1

Linked Lists

Sections 3.2 – 3.4

©2019 Shermer Linked Lists 2

Singly Linked List

A singly linked list is a
concrete data structure
consisting of a sequence
of nodes

Each node stores
◼ element or pointer to

element

◼ link to the next node

next

elem node

A B C D

©2019 Shermer Linked Lists 3

(Singly) Linked List

The first node of a linked list is called the head.

The last node of a linked list is called the tail.

When storing a linked list, we keep a pointer to the
head.

Sometimes we also keep a pointer to the tail.

A B C D

head

tail

A B C D

©2019 Shermer Linked Lists 4

Linked List

Traversing (moving from one node to another) in a
linked list is called link hopping or pointer hopping.

Sometimes null pointers are denoted with a pointer
to a symbol , and sometimes with just a dot.

The tail is easily identified as the node with the null
next pointer.

A linked list, like an array, maintains its elements in
a certain order. Unlike an array, it has no
predetermined fixed size.

A B C D

©2019 Shermer Linked Lists 5

Linked List Implementation
class StringNode {

private:

string elem;

StringNode* next;

friend class StringLinkedList;

}

class StringLinkedList {

public:

StringLinkedList();

~StringLinkedList();

bool empty() const;

const string& front() const;

void addFront(const string& e);

void removeFront();

private:

StringNode* head;

}

©2019 Shermer Linked Lists 6

Linked List Implementation
StringLinkedList::StringLinkedList()

: head(NULL) { }

StringLinkedList::~StringLinkedList()

{ while (!empty()) removeFront(); }

bool StringLinkedList::empty() const

{ return head == NULL; }

const string& StringLinkedList::front() const

{ return head->elem; }

©2019 Shermer Linked Lists 7

Inserting at the Head

1. Allocate a new
node

2. Insert new element

3. Have new node
point to old head

4. Update head to
point to new node

©2019 Shermer Linked Lists 8

Inserting at the Head

void StringLinkedList::addFront(const string& e) {

StringNode* v = new StringNode;

v->elem = e;

v->next = head;

head = v;

}

©2019 Shermer Linked Lists 9

Removing at the Head

1. Update head to point
to next node in the list

2. Delete the former first
node

void StringLinkedList::removeFront() {

StringNode* old = head;

head = old->next;

delete old;

}

©2019 Shermer Linked Lists 10

Inserting at the Tail

1. Allocate a new
node

2. Insert new element

3. Have new node
point to null

4. Have old last node
point to new node

5. Update tail to point
to new node

©2019 Shermer Linked Lists 11

Removing at the Tail

Removing at the tail
of a singly linked list
is not efficient!

There is no
constant-time way
to update the tail to
point to the previous
node

©2019 Shermer Linked Lists 12

Doubly Linked Lists

We get much more
flexibility by adding a
predecessor link to each
node, at the cost of
almost doubling the
overhead.

next

elem
node

prev

DCBA

©2019 Shermer Linked Lists 13

Sentinels

Oftentimes we add sentinel (a.k.a. dummy) nodes to
the beginning and end of a doubly linked list.

These are called the header and the trailer.

Sentinels simplify programming; with them, a real
list node always has a non-null prev and next.

CBA ED

header trailer

©2019 Shermer Linked Lists 14

Inserting after a node v
(Linking in)

1. Allocate a new node z

2. Insert new element

3. Make z’s prev link
point to v

4. Make z’s next link
point to w = v->next

5. Make w’s prev link
point to z

6. Make v’s next link
point to z

VRJ

v

L
z

VRJ

v

L
z

VRJ

v

L
z

w

lin
k
in

g
 i
n

©2019 Shermer Linked Lists 15

Inserting after a node v

Text gives code for inserting before node v; this code
is for inserting after.

void DLinkedList::add(DNode* v, const Elem& e) {

DNode* z = new DNode;

z->elem = e;

z->prev = v;

z->next = v->next;

v->next->prev = z;

v->next = z;

}

void DLinkedList::addFront(const Elem& e)

{ add(header, e); }

void DLinkedList::addBack(const Elem& e)

{ add(trailer->prev, e); }

©2019 Shermer Linked Lists 16

Deleting a node v
(Linking out)

Let u be the node before
v, and w be the node after.

1. Make w’s prev link
point to u

2. Make u’s next link
point to w

3. Delete node v

VRJ

v

u w

lin
k
in

g
 o

u
t

VRJ

v

u w

VJ

v

u w

©2019 Shermer Linked Lists 17

Deleting a node v

void DLinkedList::remove(DNode* v) {

DNode* u = v->prev;

DNode* w = v->next;

u->next = w;

w->prev = u;

delete v;

}

void DLinkedList::removeFront() {

if (header->next == trailer)

throw RemoveFromEmptyListException(“msg1”);

remove(header->next);

}

void DLinkedList::removeBack() {

if (trailer->prev == header)

throw RemoveFromEmptyListException(“msg2”);

remove(trailer->prev);

}

©2019 Shermer Linked Lists 18

Circularly Linked Lists

For a circularly linked list, we use the same kind of nodes as a
singly linked list.

However, the “last” node of the list doesn’t have a null next
pointer, but rather a pointer to the “first” node.

We keep a pointer to a node of the list, called the cursor.

The node the cursor points to is called the back of the list; the
next node is called the front.

LAX YVR YYZ BGA

cursor
backfront

©2019 Shermer Linked Lists 19

Reversing a Doubly Linked List
First approach: copy input list L
into temporary list T in reverse
order, then copy T back to L
(without reversing).

To get the reversed copy,
repeatedly remove the first
element of L and copy it to the
front of T.

To get the non-reversed copy,
repeatedly remove the first
element of T and copy it to the
back of L.

void listReverse(DLinkedList& L)
{

DLinkedList T;

while (!L.empty()) {

string s = L.front();

L.removeFront();

T.addFront(s);

}

while (!T.empty()) {

string s = T.front();

T.removeFront();

L.addBack(s);

}

}

©2019 Shermer Linked Lists 20

Reversing a Doubly Linked List
Second approach:
return the reversed list;
empty the input list in
the process.

How could you do this
without emptying the
input list? (Hint: it’s
much easier if this is a
member function of
DLinkedList)

DLinkedList* reverse(DLinkedList& L) {

DLinkedList* T = new DLinkedList();

while (!L.empty()) {

string s = L.front();

L.removeFront();

T->addFront(s);

}

return T;

}

