Linked Lists

Sections 3.2 - 3.4

za

© 2019 Shermer, based on
Goodrich, Tamassia, and Mount

Linked Lists

AN

N

Singly Linked

List

A singly linked list is a
concrete data structure
consisting of a sequence

of nodes
Each node stores

= element or pointer to
element

» link to the next node

B T B S e Iy B P

~— e e e~

vl

| |

A B
©2019 Shermer

I

|

C

Linked Lists

N

(Singly) Linked List

The first node of a linked list is called the head.
The last node of a linked list is called the tail.
When storing a linked list, we keep a pointer to the

head. X i
head T > t > t > t o——>®
! | } }
A B C D

Sometimes we also keep a pointer to the tail.

-
é

o——»Q

4
——9

! !

A B C
©2019 Shermer Linked Lists

Linked List

N

Traversing (moving from one node to another) in a
linked list is called link hopping or pointer hopping.

Sometimes null pointers are denoted with a pointer
to a symbol &, and sometimes with just a dot.

1 S e K S o K1 S e KA
! } } }
A B C D

The tail is easily identified as the node with the null
next pointer.

A linked list, like an array, maintains its elements in
a certain order. Unlike an array, it has no
predetermined fixed size.

©2019 Shermer Linked Lists

N

class StringNode {
private:
string elem;
StringNode* next;

¥

©2019 Shermer

Linked List Implementation

class StringLinkedList {

public:
StringLinkedList();
~StringLinkedList();
bool empty() const;

friend class StringLinkedList; const string& front() const;

void addFront(const string& e);
void removeFront();

private:
StringNode* head;

}

Linked Lists

Linked List Implementation

StringLinkedList::StringLinkedList()
: head(NULL) { }

N

StringLinkedList::~StringLinkedList()
{ while ('empty()) removeFront(); }

bool StringLinkedList::empty() const
{ return head == NULL; }

const string& StringLinkedList::front() const
{ return head->elem; }

©2019 Shermer Linked Lists

Inserting at the Head

N

1. Allocate a new
node .

2. Insert new element ({ &P &2

3. Have new node ‘ i
point to old head ‘a(;fn_m;@,:Ua.m):]_m) = I

4. Update head to @
point to new node

(_Baltim-:-rc_) (_ Rome _) (_ Seattle) (_T-:-rc-nto)

ch

©2019 Shermer Linked Lists

N

Inserting at the Head

void StringLinkedList::addFront(const string& e) {
StringNode* v = new StringNode;
v->elem = e;

v->next = head;
head = v;

¥

©2019 Shermer Linked Lists

Removing at the Head

1. Update head to point E?E'—“f—“ﬁj—“f—@
to next node in the list ED ED EGD E&ED

2. Delete the former first e

node L

N

void StringlLinkedList::removeFront() {
StringNode* old = head;
head = old->next;
delete old;

}

©2019 Shermer Linked Lists

Inserting at the Talil

N

1. Allocate a new
node

2. Insert new element i HRp TRy BN

3. Have new node
hoint to null

4. Have old last node

noint to new node

5. Update tail to point
to new node

©2019 Shermer Linked Lists

10

N

Removing at the Tall

Removing at the tail
of a singly linked list
is not efficient!

There is no

haad tail

_ Ft*—htt—ht*—}*t*—-
constant-time way ()1 (jﬁ Aﬁ (ij
to update the tail to
point to the previous
node

©2019 Shermer Linked Lists

%,

11

N

Doubly Linked Lists

¢ We get much more " prev next |
flexibility by adding a o e | ¢ | >
predecessor link to each |
node, at the cost of | ode
almost doubling the I\\ elem)
overhead. SR U VAN S S BN S -
—1 o’/\) T //\,0 o’/\) ~——

———
——
——r

©2019 Shermer Linked Lists 12

Sentinels

N

Oftentimes we add sentinel (a.k.a. dummy) nodes to
the beginning and end of a doubly linked list.

These are called the header and the trailer.

Sentinels simplify programming; with them, a real
list node always has a non-null prev and next.

—r =ik
1 trailer

A B C D E

| [4=¥

header

)
D

©2019 Shermer Linked Lists 13

Inserting after a node v
(Linking in)

4 Y
1. Allocate a new node z Llf=EllE=ER
2. Insert new element “TIC
(3. Make Z's prev link y
point to v e FRR
=1 4. Make z's next link)
S < point to w = v->next PlL
= | 5. Make w’s prev link . .
point to z "Oi="F"'l"R
_ 6. Make v’s next link > ”L .?
point to z

©2019 Shermer Linked Lists

Inserting after a node v

N

Text gives code for inserting before node v; this code
is for inserting after.

void DLinkedList::add(DNode* v, const Elem& e) {
DNode* z = new DNode;

z->elem = g;
Z->prev = v;
z->next = v->next; void DLinkedList::addFront(const Elem& e)
V->next->prev = z; { add(header, €); }
v->next = z;
) void DLinkedList::addBack(const Elem& e)

{ add(trailer->prev, e); }

©2019 Shermer Linked Lists 15

Deleting a node v
(Linking out)

Let u be the node before o o [dp|]
v, and w be the node after. u
S/ (1. Make w’'s prev link
2= point to u H=T4=F
£/ 2. Make u’s next link u
point to w
3. Delete node v TR

©2019 Shermer Linked Lists

16

N

Deleting a node v

void DLinkedList::remove(DNode* v) {
DNode* u = v->preyv;
DNode* w = v->next;

u->next = w;] _ :
W->prev = U; void DLinkedList::removeFront() {

delete v if (header->next == trailer)
y ' throw RemoveFromEmptyListException(“*msg1”);
remove(header->next);

}

void DLinkedList::removeBack() {
if (trailer->prev == header)
throw RemoveFromEmptyListException(*msg2”);
remove(trailer->prev);

¥
©2019 Shermer Linked Lists 17

Circularly Linked Lists

N

For a circularly linked list, we use the same kind of nodes as a
singly linked list.

However, the “last” node of the list doesn’t have a null next
pointer, but rather a pointer to the “first” node.

We keep a pointer to a node of the list, called the cursor.

The node the cursor points to is called the back of the list; the
next node is called the front.

> ® ® @

front back cursor

LLAX YVR YYZ *| BGA

\ 4

\ 4

©2019 Shermer Linked Lists 18

N

Reversing a Doubly Linked List

First approach: copy input list L
into temporary list T in reverse
order, then copy T back to L
(without reversing).

To get the reversed copy,
repeatedly remove the first
element of L and copy it to the
front of T.

To get the non-reversed copy,
repeatedly remove the first
element of T and copy it to the
back of L.

©2019 Shermer Linked Lists

void listReverse(DLinkedList& L)

{
DLinkedList T;

while (!L.empty()) {
string s = L.front();
L.removeFront();
T.addFront(s);

by

while (IT.empty()) {
string s = T.front();
T.removeFront();
L.addBack(s);

}
}

19

Reversing a Doubly Linked List

T 4 Second approach: DLinkedList* reverse(DLinkedList& L) {
return the reversed list; DLinkedList* T = new DLinkedList();
empty the input list in Whilé ('L.empty()) {
the process. string s = L.front();

L.removeFront();
T->addFront(s);

4 How could you do this Y
without emptying the return T;
input list? (Hint: it's)

much easier if this is a
member function of
DLinkedList)

©2019 Shermer Linked Lists 20

