Arrays

Section 3.1

""'.'

VRS [[[}
[/[[/]]/

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Arrays

Arrays

N

o We study some applications of arrays. We start with an
array to hold the high scores of a game.

a First we design the class to hold an individual high score.

class GameEntry {
public:
GameEntry(const string& n="", int s=0);
string getName() const;
int getScore() const;
private:
string name;
int score;
b

© 2019 Shermer Arrays 2

GameEntry Definitions

N

a Here are the implementations of the
GameEntry member functions, suitable for a
.cpp file.

GameEntry::GameEntry(const string& n, int s)
: name(n), score(s) { }

string GameEntry::getName() const { return name; }
int GameEntry::getScore() const { return score; }

© 2019 Shermer Arrays

A Class for High Scores

class Scores {

public:
Scores(int maxEnt = 10);
~Scores();
void add(const GameEntry& e);
GameEntry remove(int i)

throw(indexOutOfBoundsException);
private:

int maxEntries;
int numEntries;
GameEntry* entries;

}

N

© 2019 Shermer Arrays

Constructor and Destructor
for Scores

N

Scores::Scores(int maxEnt) {
maxEntries = maxEnt;
entries = new GameEntry[maxEntries];
numEntries = 0;

}

Scores::~Scores() {
delete[] entries;

}

© 2019 Shermer Arrays

Scores Design

N

a We choose to keep the high scores sorted from

highest to lowest. This is not the only choice we
could make.

o Here is an example:

Miya
1105

Rob
750

Paul
720

Anna
660

Rose
590

Jack
510

0

© 2019 Shermer

1

2

3

A

Arrays

5

6

Insertion

N

a In add(e), we must prepare to insert e by moving
all lower scores to the right.

Jill

740

VNN TN
Miya | Rob Paul | Anna| Rose| Jack
1105|750 720 1660 [590 [510

c 1 2 3 4 5 6 7 8 9

a If we already have the maximum number of scores,
then the lowest one is discarded.

© 2019 Shermer Arrays

Insertion

void Scores::add(const GameEntry& e) {
int newScore = e.getScore();
if (numEntries == maxEntries) {
if (newScore <= entries[maxEntries-1].getScore())
return;

N

¥

else humEntries++;

int i = numEntries - 2;

while (i >= 0 && newScore > entries[i].getScore()) {
entries[i+1] = entries|i];
I--;

)

entries[i+1] = e;

¥

© 2019 Shermer Arrays

Insertion

void Scores::add(const GameEntry& e) {
int newScore = e.getScore();
if (numEntries == maxEntries) {
if (newScore <= entries[maxEntries-1].getScore())
return;

N

¥

else humEntries++;

int i = numEntries - 1;

while (i > 0 &&% newScore > entries[i-1].getScore()) {
entries[i] = entries[i-1];
I--;

)

entries[i] = e;

¥

© 2019 Shermer Arrays

- TIMTOWTDI

a Pronounced “Tim-toady”

There Is More Than One
Way To Do It.

a But not all ways are equal. Must check

that all limiting cases are handled
correctly.

© 2019 Shermer Arrays

10

Removal

N

remove(i): Remove and return the game entry e at
index /7 in the entries array. If index / is
outside the bounds of the enftries array,
then this function throws an
IndexOutOrfBoundsException. Otherwise,
the entries array is updated to remove
the object at index / and all objects
previously stored at indices higher than /
are “shifted left” to fill in for the removed
object.

Similar to add(), but in reverse.

© 2019 Shermer Arrays 11

Removal

N

GameEntry Scores::remove(int i)
throw(IndexOutOfBoundsException) {
if ((i < 0) || (i >= numEntries))

throw IndexOutOfBoundsException(
“Invalid index”);

GameEntry e = entries|i];

for (intj = i+1; j < numEntries; j++)
entries[j-1] = entries[j];

numEntries--;

return e;

© 2019 Shermer Arrays

12

Sorting an Array

N

a We've seen that we can add or remove objects at a
certain index i in an array while keeping the previous
order of the objects intact.

a Now we consider how to rearrange objects of an array
that are ordered arbitrarily into ascending order. This is
known as sorting.

o We will use an algorithm known as insertion sort.
m Start with the first element of the array. It's sorted.
= Step on to the next element of the array, which we'll call the k-th
= Insert the k-th element into its proper place in the first k-1.

= Repeat the last two steps until the n-th element has been
inserted.

© 2019 Shermer Arrays 13

Insertion Sort Pseudocode

Algorithm InsertionSort(A):

Input: An array A of n comparable elements

Output: The array A with elements rearranged in nondecreasing
order

N

fori —1 ton-1do
{insert A[i] at its proper location in A[O]...A[i-1]}
cur «— Ali]
je—i-1
while j =0 and A[j] > cur do
A[j+1] «— A[j]
J<—1-1
A[j+1] « cur { cur is now in the right place }

© 2019 Shermer Arrays 14

Insertion Sort C++

N

void InsertionSort(char* A, int n) {
for (inti=1;i<n;i++){
char cur = A[i];
intj=i—-1;
while ((j >= 0) && (A[j] > cur)) {
Alj+1] = A3];
I
}
A[j+1] = cur;
}
}

© 2019 Shermer Arrays

15

Insertion Sort Example

p
\-
| CUr
&3
1 |c BIC|D|A|F|E
&3
2 |p| |[B|c|D|A|F|E - A
A Blc|D|D|F
/\ /N
3 |A| [Blc|D|A|F|E < [a] [&]c[clolF
3
4 |[F] [A|B|C|D|F|E - BIcIDIF
/\ &3
5 |E A|B|C|D|F|E E A|lB|C|D|F
/\
E AlB|C|D|E

© 2019 Shermer Arrays

Two-Dimensional Arrays

o We can make arrays that take two indices: a row
number and a column number. These are
sometimes called matrices (singular: matrix).

N

int M[4][5];

a This example has 4 rows (rows 0, 1, 2, 3) and 5
columns (columns O, 1, 2, 3, and 4).

012 3 4

M[1][3] is shown in red.

W NN = O

© 2019 Shermer Arrays

17

Arrays of Arrays

N

a A two-dimensional array can be thought of as an
array of arrays.

o 4 arrays of 5 elements
each.

o Plus one array of 4
elements, each element
a 5-element array.

W N = O

o C++ uses this row-
major order.

© 2019 Shermer Arrays 18

N

Dynamic Allocation of Matrices

a If we do not know the size of the matrix in
advance, we must allocate it dynamically.

a C++ does not allow dynamic allocation of
multidimensional arrays; it only really
understands one-dimensional arrays.

a We use the array of arrays idea.

int** M = new Iint*[n];
for(inti=0;i<n; i++)
M[i] = new int[m];

© 2019 Shermer Arrays

for(inti=0;i<n; i++)
delete[] M[i];
delete[] M;

19

A Quick Note on Style

N

a It is recommended that you not leave any constant
integers in your code except 0 and 1, and possibly
-1.

a Consider:
int schedule[5][8];

o Much better:
const int NUM_WEEKDAYS = 5;
const int NUM_WORK_HOURS = 8;

int schedule[NUM_WEEKDAYS][NUM_WORK_HOURS];

© 2019 Shermer Arrays 20

A Quick Note on Style,

continued

N

a This actually applies to any constants, including
string constants.

const char* SCREWDRIVER =
“screwdriver”;
Toolkit::use(char* tool
/) (A Toolkit::use(char* tool) {
if(tool == “screwdriver”) { / =
/) if(tool == SCREWDRIVER) {
\ /] ...
y)
}
toolkit->use("screwdirver”); toolkit->use(SCREWDIRVER);

© 2019 Shermer Arrays 21

