
Arrays 1

Arrays

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Section 3.1

Arrays 2

Arrays

❑ We study some applications of arrays. We start with an

array to hold the high scores of a game.

❑ First we design the class to hold an individual high score.

class GameEntry {

public:

GameEntry(const string& n=“”, int s=0);

string getName() const;

int getScore() const;

private:

string name;

int score;

};

© 2019 Shermer

Arrays 3

GameEntry Definitions

❑ Here are the implementations of the
GameEntry member functions, suitable for a
.cpp file.

GameEntry::GameEntry(const string& n, int s)

: name(n), score(s) { }

string GameEntry::getName() const { return name; }

int GameEntry::getScore() const { return score; }

© 2019 Shermer

Arrays 4

A Class for High Scores
class Scores {

public:

Scores(int maxEnt = 10);

~Scores();

void add(const GameEntry& e);

GameEntry remove(int i)

throw(indexOutOfBoundsException);

private:

int maxEntries;

int numEntries;

GameEntry* entries;

}

© 2019 Shermer

Arrays 5

Constructor and Destructor
for Scores
Scores::Scores(int maxEnt) {

maxEntries = maxEnt;

entries = new GameEntry[maxEntries];

numEntries = 0;

}

Scores::~Scores() {

delete[] entries;

}

© 2019 Shermer

Arrays 6

Scores Design

❑ We choose to keep the high scores sorted from
highest to lowest. This is not the only choice we
could make.

❑ Here is an example:

0 1 2

© 2019 Shermer

Miya
1105

Rob
750

Paul
720

Anna
660

Rose
590

Jack
510

3 4 5 6 7 8 9

Arrays 7

Insertion

❑ In add(e), we must prepare to insert e by moving
all lower scores to the right.

❑ If we already have the maximum number of scores,
then the lowest one is discarded.

0 1 2

© 2019 Shermer

Miya
1105

Rob
750

Paul
720

Anna
660

Rose
590

Jack
510

Jill
740

3 4 5 6 7 8 9

Arrays 8

Insertion
void Scores::add(const GameEntry& e) {

int newScore = e.getScore();

if (numEntries == maxEntries) {

if (newScore <= entries[maxEntries-1].getScore())

return;

}

else numEntries++;

int i = numEntries - 2;

while (i >= 0 && newScore > entries[i].getScore()) {

entries[i+1] = entries[i];

i--;

}

entries[i+1] = e;

}

© 2019 Shermer

Arrays 9

Insertion
void Scores::add(const GameEntry& e) {

int newScore = e.getScore();

if (numEntries == maxEntries) {

if (newScore <= entries[maxEntries-1].getScore())

return;

}

else numEntries++;

int i = numEntries - 1;

while (i > 0 && newScore > entries[i-1].getScore()) {

entries[i] = entries[i-1];

i--;

}

entries[i] = e;

}

© 2019 Shermer

Arrays 10

TIMTOWTDI

❑ Pronounced “Tim-toady”

❑ But not all ways are equal. Must check
that all limiting cases are handled
correctly.

© 2019 Shermer

There Is More Than One
Way To Do It.

Arrays 11

Removal

remove(i):Remove and return the game entry e at
index i in the entries array. If index i is
outside the bounds of the entries array,
then this function throws an
IndexOutOfBoundsException. Otherwise,
the entries array is updated to remove
the object at index i and all objects
previously stored at indices higher than i
are “shifted left” to fill in for the removed
object.

Similar to add(), but in reverse.

© 2019 Shermer

Arrays 12

Removal
GameEntry Scores::remove(int i)

throw(IndexOutOfBoundsException) {

if ((i < 0) || (i >= numEntries))

throw IndexOutOfBoundsException(

“Invalid index”);

GameEntry e = entries[i];

for (int j = i+1; j < numEntries; j++)

entries[j-1] = entries[j];

numEntries--;

return e;

}

© 2019 Shermer

Arrays 13

Sorting an Array

❑ We’ve seen that we can add or remove objects at a
certain index i in an array while keeping the previous
order of the objects intact.

❑ Now we consider how to rearrange objects of an array
that are ordered arbitrarily into ascending order. This is
known as sorting.

❑ We will use an algorithm known as insertion sort.
◼ Start with the first element of the array. It’s sorted.

◼ Step on to the next element of the array, which we’ll call the k-th

◼ Insert the k-th element into its proper place in the first k-1.

◼ Repeat the last two steps until the n-th element has been
inserted.

© 2019 Shermer

Arrays 14

Insertion Sort Pseudocode
Algorithm InsertionSort(A):

Input: An array A of n comparable elements

Output: The array A with elements rearranged in nondecreasing
order

for i ←1 to n-1 do

{insert A[i] at its proper location in A[0]…A[i-1]}

cur ← A[i]

j ← i – 1

while j ≥0 and A[j] > cur do

A[j+1] ← A[j]

j ← j – 1

A[j+1] ← cur { cur is now in the right place }

© 2019 Shermer

Arrays 15

Insertion Sort C++
void InsertionSort(char* A, int n) {

for (int i = 1; i < n; i++) {

char cur = A[i];

int j = i – 1;

while ((j >= 0) && (A[j] > cur)) {

A[j+1] = A[j];

j--;

}

A[j+1] = cur;

}

}

© 2019 Shermer

Arrays 16

Insertion Sort Example

© 2019 Shermer

B C D A F EC

B C D A F ED

B C D A F EA

B C D D F EA

B C C D F EA

B B C D F EA
A B C D F EF

A B C D F EE A B C D F FE

A B C D E FE

curi

1

2

3

4

5

Arrays 17

Two-Dimensional Arrays

❑ We can make arrays that take two indices: a row
number and a column number. These are
sometimes called matrices (singular: matrix).

int M[4][5];

❑ This example has 4 rows (rows 0, 1, 2, 3) and 5
columns (columns 0, 1, 2, 3, and 4).

© 2019 Shermer

0

1

2

3

0 1 2 3 4

M[1][3] is shown in red.

Arrays 18

Arrays of Arrays

❑ A two-dimensional array can be thought of as an
array of arrays.

© 2019 Shermer

❑ 4 arrays of 5 elements
each.

❑ Plus one array of 4
elements, each element
a 5-element array.

❑ C++ uses this row-
major order.

0

1

2

3

Arrays 19

Dynamic Allocation of Matrices

❑ If we do not know the size of the matrix in
advance, we must allocate it dynamically.

❑ C++ does not allow dynamic allocation of
multidimensional arrays; it only really
understands one-dimensional arrays.

❑ We use the array of arrays idea.

int** M = new int*[n];

for (int i = 0; i < n; i++)

M[i] = new int[m];

© 2019 Shermer

for (int i = 0; i < n; i++)
delete[] M[i];

delete[] M;

Arrays 20

A Quick Note on Style

❑ It is recommended that you not leave any constant
integers in your code except 0 and 1, and possibly
-1.

❑ Consider:
int schedule[5][8];

❑ Much better:
const int NUM_WEEKDAYS = 5;

const int NUM_WORK_HOURS = 8;

…

int schedule[NUM_WEEKDAYS][NUM_WORK_HOURS];

© 2019 Shermer

Arrays 21

A Quick Note on Style,
continued

❑ This actually applies to any constants, including
string constants.

Toolkit::use(char* tool) {

// …

if(tool == “screwdriver”) {

// …

}

}

toolkit->use(“screwdirver”);

© 2019 Shermer

const char* SCREWDRIVER =

“screwdriver”;

Toolkit::use(char* tool) {

// …

if(tool == SCREWDRIVER) {

// …

}

}

toolkit->use(SCREWDIRVER);

