>Interfaces, Templates, and
Exceptions

Sections 2.2.5-2.4

© 2019 Shermer,
Based on Goodrich,
Tamassia, Mount Interfaces, Templates, Exceptions

AN

API and interface

N

a Classes should provide an application programming
interface (API), or simply interface, that specifies how
other objects can interact with objects of that class.

a In the ADT-based approach, an interface is specified
as a type definition with a collection of member
functions, with the arguments for each member
function being of specified types.

a Java provides a language construct for specifying
interfaces, but C++ does not.

© 2019 Shermer Interfaces, Templates, Exceptions 2

Informal Interfaces

N

a We will use informal interfaces which look like a C++
specification but aren’t exactly valid C++ constructs.

class Stack {

public:
bool isEmpty() const;
void push(int x);
int pop();

b

a Note that this does not contain any data members or
function bodies. It is just a documentation aid.

© 2019 Shermer Interfaces, Templates, Exceptions

Abstract Classes

N

a An abstract class is a C++ class that can only be
used as a base class for inheritance—it cannot be
used to create instances.

a A class becomes abstract when one or more of its
functions are declared as abstract (also known as
pure virtual). This is done as follows:

class Shape {
virtual void draw() = 0;

/] ..

© 2019 Shermer Interfaces, Templates, Exceptions

Abstract Classes

N

L

a C++ does not allow the creation of an object that
has one or more pure virtual functions.

a Thus, any subclass that expects to be instantiated
must override all pure virtual functions of its
superclass.

o We can use abstract classes in C++ to achieve most
of the effect of an interface.

class Stack {

public:
virtual bool isEmpty() const = 0;
virtual void push(int x) = 0;
virtual int pop() = 0;

¥

© 2019 Shermer Interfaces, Templates, Exceptions

Concrete classes

N

a The opposite of abstract is concrete.

class ConcreteStack : public Stack {
public:
virtual bool isEmpty() { ... };
virtual void push(intx) { ... };
virtual int pop() { ... };
private:
// ...
b

© 2019 Shermer Interfaces, Templates, Exceptions

Templates

N

a Another mechanism for polymorphism in C++
is templates.

a I.e., templates allow us to write code that
works for a variety of different types.

o Consider:

int integerMin(int a, int b)
{return(a<b?a:b) }

double doubleMin(double a, double b)
{return(a<b?a:b);}

© 2019 Shermer Interfaces, Templates, Exceptions

Function Templates

N

a We can write a single function that works for both
of these by using a template:

template <typename T>
T generalMin(T a, T b) {
return (a<b?a:b);

}

a The type parameter T takes the place of an actual
type in the declaration of the function.

cout << generalMin(3, 4) << "' '
<< generalMin(1.1, 3.1) << '
<< generalMin('t', 'g") << endl;

© 2019 Shermer Interfaces, Templates, Exceptions

N

Class Templates

o C++ also allows classes to be templated.

a The Standard Template Library (STL), a common
library of C++ data structures, uses class templates
extensively.

template <typename T>
class BasicVector {
public:
BasicVector(int capac = 10);
T& operator[](int i) { return a[i]; }
/...
private:
T* a;
int capacity;

}

© 2019 Shermer Interfaces, Templates, Exceptions

Class Templates

Outside of the class body, one can specify member
functions such as:

N

template <typename T>
BasicVector<T>::BasicVector(int capac) {
capacity = capac;
a = new T[capacity];

}
And one can instantiate the class by specifying the type:

BasicVector<int> iv(5);
BasicVector<double> dv(20);
BasicVector<string> sv(10);

© 2019 Shermer Interfaces, Templates, Exceptions 10

Class Templates

a Any type can be used as the argument for a
template specified with typename.

a This includes templated types!

N

BasicVector<BasicVector<int> > xv(5); // this is a vector of vectors

/] ...
xv[2][8] = 15;

o Here each element of the 5-element vector
was initialized with the default capacity of 10.

© 2019 Shermer Interfaces, Templates, Exceptions 11

N

Exceptions

a Exceptions are unexpected events that happen during

the execution of a program, such as an error
condition or an unexpected input.

C++ allows the programmer to create an object that
represents the exception.

This object is then thrown by the code that
encounters the unexpected event, and then caught by
other code that handles the event.

If no code catches the exception, the program is
terminated.

The C++ run-time environment can throw exceptions;
an example is when a program runs out of memory.

© 2019 Shermer Interfaces, Templates, Exceptions 12

Exceptions

N

a An alternative to exceptions is to have a function
return special error codes or condition codes to
indicate that it encountered unexpected
circumstances.

o Exceptions are more modern but you will still
encounter many library functions that return condition
codes.

o In C++, any object can be thrown, but it is the best

practice to define object classes for exceptions, often
with Exception or Error as part of its name.

© 2019 Shermer Interfaces, Templates, Exceptions 13

Sample Exception Classes

N
\J

class MathException {
public:
MathException(const string& err)
: errMsg(err) { }
string getError() { return errMsg; }
private:
string errMsg;

hor

class ZeroDivideException : public MathException {
public:
ZeroDivideException(const string& err)
: MathException(err) { }

hor

© 2019 Shermer Interfaces, Templates, Exceptions

14

Throwing and Catching

a Exceptions are processed in the context of try and
catch blocks.

N

try {
/] -
if (divisor == 0)
throw ZeroDivideException(“divide by zero!”);

)
catch (ZeroDivideException& zde) {

// handle division by zero

)
catch (MathException& me) {

// handle any other math exception

¥

© 2019 Shermer Interfaces, Templates, Exceptions

15

N

Q

Try-Catch statements

A try-catch statement consists of a try block followed
by any humber of catch blocks.

Execution begins in the try block.

If the try block finishes without any exceptions being
thrown, then the catch blocks are not executed.

If the try block throws an exception, then control is
immediately transferred to the first catch block that
matches that exception.

If no catch block matches the exception, then the
subroutine/function being executed is exited with the
thrown exception.

© 2019 Shermer Interfaces, Templates, Exceptions 16

Exception Specification

N

a An exception that is not caught ends a function and
this can propagate up through many active functions.

a Therefore, when specifying a function, we should also
specify the exceptions it might throw. This lets the
programmer and the compiler know which exceptions
to expect.

a This is done with a throw declaration as part of the
function definition.

void calculator() throw(ZeroDivideException,
NegativeRootException) {
// ... function body

¥

© 2019 Shermer Interfaces, Templates, Exceptions 17

Exception Specification

N

a A benefit to specifying exceptions on a function is that

it tells us which exceptions the function does not itself
need to handle.

a This is appropriate when other code is responsible for
the circumstances that led to the exception.

a Here's an example of passing an exception through a
function:

void getReadyForClass() throw(OutOfMoneyException) {

goShopping(); // could throw OutOfMoneyException
makeCookiesForTA();

¥

© 2019 Shermer Interfaces, Templates, Exceptions 18

Exception Specification

a A function can declare that it throws as many
exceptions as it likes.

a Such a listing of exceptions can be simplified if several
exceptions are derived classes of the same exception.
If so, we need only list the appropriate base class.

N

[AIphabetException} int func() throw(AAException,
BBEXxception,
CCException) { ... }

[AAException } LBBException } [CCException } int func() throw(
AlphabetException) { ... }

© 2019 Shermer Interfaces, Templates, Exceptions 19

Exception Specification

N

a A function that does not contain a throw declaration
is assumed to throw any exception.

void ICanThrowAnyException();

a A function can declare it throws no exceptions by
specifying an empty list after the throw keyword.

void ICanThrowNoExceptions() throw();

© 2019 Shermer Interfaces, Templates, Exceptions 20

General Exception Class

class RuntimeException {
private:
string errorMsg;
public:
RuntimeException(const string& err) {
errorMsg = err;
)
string getMessage() const {
return errorMsg;

}
Jor

N

o This is an example of an immutable object.

© 2019 Shermer Interfaces, Templates, Exceptions 21

