
Interfaces, Templates, Exceptions 1

Interfaces, Templates, and
Exceptions

© 2019 Shermer,
Based on Goodrich,
Tamassia, Mount

Sections 2.2.5-2.4

Interfaces, Templates, Exceptions 2

API and interface

❑ Classes should provide an application programming

interface (API), or simply interface, that specifies how

other objects can interact with objects of that class.

❑ In the ADT-based approach, an interface is specified

as a type definition with a collection of member

functions, with the arguments for each member

function being of specified types.

❑ Java provides a language construct for specifying

interfaces, but C++ does not.

© 2019 Shermer

Interfaces, Templates, Exceptions 3

Informal Interfaces
❑ We will use informal interfaces which look like a C++

specification but aren’t exactly valid C++ constructs.

class Stack {

public:

bool isEmpty() const;

void push(int x);

int pop();

};

❑ Note that this does not contain any data members or
function bodies. It is just a documentation aid.

© 2019 Shermer

Interfaces, Templates, Exceptions 4

Abstract Classes
❑ An abstract class is a C++ class that can only be

used as a base class for inheritance—it cannot be
used to create instances.

❑ A class becomes abstract when one or more of its
functions are declared as abstract (also known as
pure virtual). This is done as follows:

class Shape {

virtual void draw() = 0;

// …

}

© 2019 Shermer

Interfaces, Templates, Exceptions 5

Abstract Classes

❑ C++ does not allow the creation of an object that
has one or more pure virtual functions.

❑ Thus, any subclass that expects to be instantiated
must override all pure virtual functions of its
superclass.

❑ We can use abstract classes in C++ to achieve most
of the effect of an interface.

class Stack {

public:

virtual bool isEmpty() const = 0;

virtual void push(int x) = 0;

virtual int pop() = 0;

};

© 2019 Shermer

Interfaces, Templates, Exceptions 6

Concrete classes

❑ The opposite of abstract is concrete.

class ConcreteStack : public Stack {

public:

virtual bool isEmpty() { … };

virtual void push(int x) { … };

virtual int pop() { … };

private:

// …

};

© 2019 Shermer

Interfaces, Templates, Exceptions 7

Templates

❑ Another mechanism for polymorphism in C++
is templates.

❑ I.e., templates allow us to write code that
works for a variety of different types.

❑ Consider:

int integerMin(int a, int b)

{ return (a < b ? a : b); }

double doubleMin(double a, double b)

{ return (a < b ? a : b); }

© 2019 Shermer

Interfaces, Templates, Exceptions 8

Function Templates
❑ We can write a single function that works for both

of these by using a template:

template <typename T>

T generalMin(T a, T b) {

return (a < b ? a : b);

}

❑ The type parameter T takes the place of an actual
type in the declaration of the function.

cout << generalMin(3, 4) << ' '

<< generalMin(1.1, 3.1) << ' ‘

<< generalMin('t', 'g') << endl;

© 2019 Shermer

Interfaces, Templates, Exceptions 9

Class Templates
❑ C++ also allows classes to be templated.

❑ The Standard Template Library (STL), a common
library of C++ data structures, uses class templates
extensively.

template <typename T>

class BasicVector {

public:

BasicVector(int capac = 10);

T& operator[](int i) { return a[i]; }

// …

private:

T* a;

int capacity;

}

© 2019 Shermer

Interfaces, Templates, Exceptions 10

Class Templates
Outside of the class body, one can specify member
functions such as:

template <typename T>

BasicVector<T>::BasicVector(int capac) {

capacity = capac;

a = new T[capacity];

}

And one can instantiate the class by specifying the type:

BasicVector<int> iv(5);

BasicVector<double> dv(20);

BasicVector<string> sv(10);

© 2019 Shermer

Interfaces, Templates, Exceptions 11

Class Templates

❑ Any type can be used as the argument for a
template specified with typename.

❑ This includes templated types!

BasicVector<BasicVector<int> > xv(5); // this is a vector of vectors

// …

xv[2][8] = 15;

❑ Here each element of the 5-element vector
was initialized with the default capacity of 10.

© 2019 Shermer

Interfaces, Templates, Exceptions 12

Exceptions
❑ Exceptions are unexpected events that happen during

the execution of a program, such as an error
condition or an unexpected input.

❑ C++ allows the programmer to create an object that
represents the exception.

❑ This object is then thrown by the code that
encounters the unexpected event, and then caught by
other code that handles the event.

❑ If no code catches the exception, the program is
terminated.

❑ The C++ run-time environment can throw exceptions;
an example is when a program runs out of memory.

© 2019 Shermer

Interfaces, Templates, Exceptions 13

Exceptions
❑ An alternative to exceptions is to have a function

return special error codes or condition codes to
indicate that it encountered unexpected
circumstances.

❑ Exceptions are more modern but you will still
encounter many library functions that return condition
codes.

❑ In C++, any object can be thrown, but it is the best
practice to define object classes for exceptions, often
with Exception or Error as part of its name.

© 2019 Shermer

Interfaces, Templates, Exceptions 14

Sample Exception Classes
class MathException {

public:

MathException(const string& err)

: errMsg(err) { }

string getError() { return errMsg;}

private:

string errMsg;

};

class ZeroDivideException : public MathException {

public:

ZeroDivideException(const string& err)

: MathException(err) { }

};

© 2019 Shermer

Interfaces, Templates, Exceptions 15

Throwing and Catching

❑ Exceptions are processed in the context of try and
catch blocks.

try {

// …

if (divisor == 0)

throw ZeroDivideException(“divide by zero!”);

}

catch (ZeroDivideException& zde) {

// handle division by zero

}

catch (MathException& me) {

// handle any other math exception

}

© 2019 Shermer

Interfaces, Templates, Exceptions 16

Try-Catch statements

❑ A try-catch statement consists of a try block followed
by any number of catch blocks.

❑ Execution begins in the try block.

❑ If the try block finishes without any exceptions being
thrown, then the catch blocks are not executed.

❑ If the try block throws an exception, then control is
immediately transferred to the first catch block that
matches that exception.

❑ If no catch block matches the exception, then the
subroutine/function being executed is exited with the
thrown exception.

© 2019 Shermer

Interfaces, Templates, Exceptions 17

Exception Specification
❑ An exception that is not caught ends a function and

this can propagate up through many active functions.

❑ Therefore, when specifying a function, we should also
specify the exceptions it might throw. This lets the
programmer and the compiler know which exceptions
to expect.

❑ This is done with a throw declaration as part of the
function definition.

void calculator() throw(ZeroDivideException,

NegativeRootException) {

// … function body

}

© 2019 Shermer

Interfaces, Templates, Exceptions 18

Exception Specification

❑ A benefit to specifying exceptions on a function is that
it tells us which exceptions the function does not itself
need to handle.

❑ This is appropriate when other code is responsible for
the circumstances that led to the exception.

❑ Here’s an example of passing an exception through a
function:

void getReadyForClass() throw(OutOfMoneyException) {

goShopping(); // could throw OutOfMoneyException

makeCookiesForTA();

}

© 2019 Shermer

Interfaces, Templates, Exceptions 19

Exception Specification

❑ A function can declare that it throws as many
exceptions as it likes.

❑ Such a listing of exceptions can be simplified if several
exceptions are derived classes of the same exception.
If so, we need only list the appropriate base class.

© 2019 Shermer

AlphabetException

AAException BBException CCException

int func() throw(AAException,
BBException,
CCException) { … }

int func() throw(

AlphabetException) { … }

Interfaces, Templates, Exceptions 20

Exception Specification

❑ A function that does not contain a throw declaration
is assumed to throw any exception.

void ICanThrowAnyException();

❑ A function can declare it throws no exceptions by
specifying an empty list after the throw keyword.

void ICanThrowNoExceptions() throw();

© 2019 Shermer

Interfaces, Templates, Exceptions 21

General Exception Class
class RuntimeException {

private:

string errorMsg;

public:

RuntimeException(const string& err) {

errorMsg = err;

}

string getMessage() const {

return errorMsg;

}

};

❑ This is an example of an immutable object.

© 2019 Shermer

