
Inheritance and Polymorphism 1

Inheritance and Polymorphism

© 2019 Shermer,
Based on Goodrich,
Tamassia, Mount

Sections 2.2.1-2.2.4

Inheritance and Polymorphism 2

Inheritance and Polymorphism

❑ Two features of object-oriented languages which take

advantage of hierarchical relationships to help provide

code reuse and modularity.

❑ Inheritance is a mechanism that allows the design of

general classes that can be specialized to (perhaps

many) particular classes, each of which reuses the

code from the general class.

❑ Polymorphism is a feature that allows a variable to

represent different particular classes, provided they all

share a common general class or interface.

© 2019 Shermer

Inheritance and Polymorphism 3

Inheritance in Object-Oriented
Languages
❑ Suppose we are designing a set of classes to

represent people at a university. We’d have a general
class Person, and specialized classes Student,
Administrator, and Instructor.

❑ We can represent this with an IS-A hierarchy.

© 2019 Shermer

Student Administrator Instructor

Person

Inheritance and Polymorphism 4

Inheritance in O-O languages

❑ The general class is known as a base
class, a parent class, or a superclass.

❑ A specialized class is known as a
derived class, a child class, or a
subclass.

❑ A subclass is said to specialize or
extend its base class, and to inherit
the functions of the base class.

© 2019 Shermer

Inheritance and Polymorphism 5

Inheritance in C++

class Person {

private:

string name;

string idNum;

public:

// …

void print();

string getName();

};

© 2019 Shermer

class Student: public Person {

private:

string major;

int gradYear;

public:

// …

void print();

void changeMajor(const
string& newMajor);

};

Inheritance and Polymorphism 6

Member Functions

Person mary(“Mary”, “12-345”);

Student bob(“Bob”, “98-764”, “Math”, 2012);

cout << bob.getName() << endl; // Person::getName()

mary.print(); // Person::print()

bob.print(); // Student::print()

mary.changeMajor(“Physics”); // Error

bob.changeMajor(“English”); // Student::changeMajor()

❑ :: is called the class scope operator in C++.

© 2019 Shermer

Inheritance and Polymorphism 7

Using the class scope operator

void Person::print() {

cout << “Name “ << name << endl;

cout << “IDnum “ << idNum << endl;

}

void Student::print() {

Person::print();

cout << “Major “ << major << endl;

cout << “Year “ << gradYear << endl;

}
© 2019 Shermer

Inheritance and Polymorphism 8

Protected members
❑ A subclass does not inherit

private members (data or
functions) from its superclass.

❑ A subclass inherits public
members, but every class can
see or use such members.

❑ An inbetween option is to use
protected members, which the
subclasses inherit but other
classes cannot see or use.

❑ protected is used just like
private or public.

© 2019 Shermer

Class Something {

private:

int a;

protected:

int b;

public:

int c;

}

Inheritance and Polymorphism 9

Constructors
❑ When a derived class is constructed, it is the

responsibility of this class’s constructor to call the
appropriate constructor for its base class.

Person::Person(const string& nm, const string& id)

: name(nm),

idNum(id) { }

Student::Student(const string& nm, const string& id,

const string& maj, int year)

: Person(nm, id),

major(maj),

gradYear(year) { }

© 2019 Shermer

Inheritance and Polymorphism 10

Constructors
Alternatively:

Person::Person(const string& nm, const string& id) {

name = nm;

idNum = id;

}

Student::Student(const string& nm, const string& id,

const string& maj, int year)

: Person(nm, id) {

major = maj;

gradYear = year;

}

© 2019 Shermer

Inheritance and Polymorphism 11

Destructors

❑ Classes are destroyed in reverse order from
their construction—subclasses before
superclasses.

❑ Subclass destructors do not need to call
superclass destructors; it is done automatically

Person::~Person() { }

Student::~Student() { }

Student* s = new Student(“Carol”, “34-927”, “Physics”, 2014);

delete s; // calls ~Student() then ~Person()

© 2019 Shermer

Inheritance and Polymorphism 12

Static Binding
Person *pp[100];

pp[0] = new Person(…);

pp[1] = new Student(…);

cout << pp[1]->getName() << ‘\n’;

pp[0]->print(); // calls Person::print()

pp[1]->print(); // calls Person::print()

pp[1]->changeMajor(“English”); // Error

❑ C++ by default uses static binding—when deter-
mining which member function to call, it considers the
object’s declared type, not its actual type.

© 2019 Shermer

Inheritance and Polymorphism 13

Dynamic Binding
❑ In computing science, static (“not moving”) means at

compile time. Dynamic (“moving”) means at run
time.

❑ So static binding means that the binding
(determination of which member function to call)
happens at compile time.

❑ In contrast, dynamic binding determines which
function to call at run time.

❑ We can force C++ to do dynamic binding by adding
the keyword virtual to a function’s declaration.

© 2019 Shermer

Inheritance and Polymorphism 14

Dynamic Binding
class Person {

virtual void print() { … }

// …

}

Person *pp[100];

pp[0] = new Person(…);

pp[1] = new Student(…);

pp[0]->print(); // calls Person::print()

pp[1]->print(); // calls Student::print()

© 2019 Shermer

class Student: public Person {

virtual void print() { … }

// …

}

Inheritance and Polymorphism 15

Virtual Destructors

❑ There are no virtual constructors; the concept makes
no sense.

❑ When we delete an element of our array pp[], we
may need to delete a Student and may need to delete
a Person.

❑ Therefore we need to call a destructor based on the
actual run-time type of the element.

❑ This is done by declaring a virtual destructor, e.g.:

virtual ~Person();

for the Person class, and similar for the Student class.

© 2019 Shermer

Inheritance and Polymorphism 16

Virtual Destructors

❑ Important rule:

© 2019 Shermer

If a base class defines any virtual functions,
it should define a virtual destructor, even if
that destructor is empty.

Inheritance and Polymorphism 17

Polymorphism

❑ Literally, polymorphism means “many forms”.

❑ For computing science, it means the ability of a
variable or a function to take different types.

❑ The array variable pp[] in our previous example is a
polymorphic variable.

❑ A variable p declared as a pointer to some class S
implies that the variable p can point to any object
belonging to any subclass T of S.

❑ If T and S both define a virtual member function a,
which is called when we invoke p->a?

© 2019 Shermer

Inheritance and Polymorphism 18

Polymorphism

❑ If T and S both define a virtual member function a,
which is called when we invoke p->a?

◼ If p points to an object of class T, then it calls T::a. In this
case, T is said to override the function S::a.

◼ If p points to an object of class S, then it calls S::a.

❑ If p points to a class object with at least one virtual
function, p is called polymorphic.

❑ Inheritance, polymorphism, and function overriding
support reusable software.

© 2019 Shermer

Inheritance and Polymorphism 19

Specialization and Extension

❑ The two primary ways of using inheritance are for
specialization and extension.

❑ In specialization, a subclass inherits some functions of
the superclass but overrides others. The overrides
provide a special way the subclass does the general
function.

❑ In extension, a subclass inherits the functions of the
superclass and adds other functions. These added
functions extend the capabilities of the superclass.

© 2019 Shermer

Inheritance and Polymorphism 20

Example of Specialization

class Shape {

public:

virtual void draw();

// …

}

class BitMap: public Shape {

public:

virtual void draw();

// …

}

© 2019 Shermer

class Circle: public Shape {

public:

virtual void draw();

// …

}

Shape* shapes[10];

// … initialize shapes …

for(int i=0; i<10; i++) {

shapes[i]->draw();

}

Inheritance and Polymorphism 21

Example of Extension

class Dog {

public:

void bark();

double getWeight();

// …

}

class BorderCollie: public Dog {

public:

void herd();

// …

}

© 2019 Shermer

BorderCollie* lassie =

new BorderCollie(…);

lassie->bark();

cout << lassie->getWeight()

<< endl;

lassie->herd();

