Inheritance and Polymorphism

Sections 2.2.1-2.2.4

AN

© 2019 Shermer,
Based on Goodrich,
Tamassia, Mount Inheritance and Polymorphism 1




Inheritance and Polymorphism

N

a Two features of object-oriented languages which take
advantage of hierarchical relationships to help provide
code reuse and modularity.

a Inheritance is a mechanism that allows the design of
general classes that can be specialized to (perhaps
many) particular classes, each of which reuses the
code from the general class.

a Polymorphism is a feature that allows a variable to
represent different particular classes, provided they all
share a common general class or interface.

© 2019 Shermer Inheritance and Polymorphism 2




Inheritance in Object-Oriented

Languages

a Suppose we are designing a set of classes to
represent people at a university. We'd have a general
class Person, and specialized classes Student,
Administrator, and Instructor.

a We can represent this with an IS-A hierarchy.

{ Person }

N

[Student } [Administrator} LInstructor }

© 2019 Shermer Inheritance and Polymorphism 3




Inheritance in O-O languages

a The general class is known as a base
class, a parent class, or a superclass.

a A specialized class is known as a
derived class, a child class, or a
subclass.

a A subclass is said to specialize or
extend its base class, and to inherit
the functions of the base class.

N

© 2019 Shermer Inheritance and Polymorphism




Inheritance in C++

T class Person {
private:
string name;
string idNum;
public:
/] .

void print();
string getName();
b

class Student: public Person {
private:

string major;

int gradYear;
public:

/]

void print();
void changeMajor(const
string& newMajor);

e

© 2019 Shermer Inheritance and Polymorphism 5




Member Functions

Person mary(“Mary”, "12-345");
Student bob("Bob”, "98-764", “"Math”, 2012);

N

cout << bob.getName() << endl; // Person::getName()
mary.print(); // Person::print()
bob.print(); // Student::print()
mary.changeMajor("Physics"); // Error
bob.changeMajor(“English”); // Student::changeMajor()

a :: is called the class scope operator in C++.

© 2019 Shermer Inheritance and Polymorphism 6



Using the class scope operator

N

void Person::print() {
cout << "Name " << name << endl;
cout << “IDnum " << idNum << endl;

¥

void Student::print() {
Person::print();
cout << “Major " << major << endl;
cout << “Year " << gradYear << endl;

¥

© 2019 Shermer Inheritance and Polymorphism 7




Protected members

N

"o A subclass does not inherit
private members (data or
functions) from its superclass.

a A subclass inherits public
members, but every class can
see or use such members.

a An inbetween option is to use
protected members, which the
subclasses inherit but other
classes cannot see or use.

a protected is used just like
private or public.

© 2019 Shermer Inheritance and Polymorphism

Class Something {
private:

int a;
protected:

int b;
public:

int C;

¥




Constructors

a When a derived class is constructed, it is the
responsibility of this class’s constructor to call the
appropriate constructor for its base class.

N

Person::Person(const string& nm, const string& id)
: name(nm),
idNum(id) { }

Student::Student(const string& nm, const string& id,
const string& maj, int year)
: Person(nm, id),
major(maj),
gradYear(year) { }

© 2019 Shermer Inheritance and Polymorphism




Constructors

Alternatively:

N

Person::Person(const string& nm, const string& id) {
name = nm;
idNum = id;

Student::Student(const string& nm, const string& id,
const string& maj, int year)
: Person(nm, id) {
major = maj;
gradYear = year;

© 2019 Shermer Inheritance and Polymorphism 10




Destructors

N

a Classes are destroyed in reverse order from
their construction—subclasses before
superclasses.

a Subclass destructors do not need to call
superclass destructors; it is done automatically

Person::~Person() { }
Student::~Student() { }

Student* s = new Student(“Carol”, "34-927", “Physics”, 2014);
delete s; // calls ~Student() then ~Person()

© 2019 Shermer Inheritance and Polymorphism 11




N

Static Binding

Person *pp[100];
pp[0] = new Person(...);
pp[1] = new Student(...);

cout << pp[1]->getName() << '\n’;

pp[0]->print(); // calls Person::print()
pp[1]->print(); // calls Person::print()
pp[1]->changeMajor(“English”); // Error

a C++ by default uses static binding—when deter-

mining w

nich member function to call, it considers the

object’s ¢

© 2019 Shermer

eclared type, not its actual type.

Inheritance and Polymorphism 12




Dynamic Binding

N

Q

In computing science, static (“not moving”) means at
compile time. Dynamic (“moving”) means at run
time.

So static binding means that the binding
(determination of which member function to call)
happens at compile time.

In contrast, dynamic binding determines which
function to call at run time.

We can force C++ to do dynamic binding by adding
the keyword virtual to a function’s declaration.

© 2019 Shermer Inheritance and Polymorphism 13




Dynamic Binding

T class Person { class Student: public Person {
virtual void print() { ... } virtual void print() { ... }
/] ... /l ...
) }

Person *pp[100];

pp[0] = new Person(...);
pp[1] = new Student(...);
pp[0]->print(); // calls Person::print()
pp[1]->print(); // calls Student::print()

© 2019 Shermer Inheritance and Polymorphism 14




N

Virtual Destructors

Q

There are no virtual constructors; the concept makes
no sense.

When we delete an element of our array pp[], we
may need to delete a Student and may need to delete
a Person.

Therefore we need to call a destructor based on the
actual run-time type of the element.

This is done by declaring a virtual destructor, e.g.:
virtual ~Person();
for the Person class, and similar for the Student class.

© 2019 Shermer Inheritance and Polymorphism 15




Virtual Destructors

N

o Important rule:

If a base class defines any virtual functions,
it should define a virtual destructor, even if
that destructor is empty.

© 2019 Shermer Inheritance and Polymorphism

16




N

Q

Q

Polymorphism

Literally, polymorphism means “many forms”.

For computing science, it means the ability of a
variable or a function to take different types.

The array variable pp[] in our previous example is a
polymorphic variable.

A variable p declared as a pointer to some class S
implies that the variable p can point to any object
belonging to any subclass T of S.

If T and S both define a virtual member function a,
which is called when we invoke p->a?

© 2019 Shermer Inheritance and Polymorphism 17




Polymorphism

a If T and S both define a virtual member function a,
which is called when we invoke p->a?

= If p points to an object of class T, then it calls T::a. In this
case, T is said to override the function S::a.

= If p points to an object of class S, then it calls S::a.

a If p points to a class object with at least one virtual
function, p is called polymorphic.

a Inheritance, polymorphism, and function overriding
support reusable software.

N

© 2019 Shermer Inheritance and Polymorphism 18




Specialization and Extension

N

a The two primary ways of using inheritance are for
specialization and extension.

a In specialization, a subclass inherits some functions of
the superclass but overrides others. The overrides
provide a special way the subclass does the general
function.

a In extension, a subclass inherits the functions of the
superclass and adds other functions. These added
functions extend the capabilities of the superclass.

© 2019 Shermer Inheritance and Polymorphism 19




Example of Specialization

q

class Shape { class Circle: public Shape {

public: public:
virtual void draw(); virtual void draw();

/... /] ...

} }

class BitMap: public Shape { Shape* shapes[10];
public: // ... initialize shapes ...

virtual void draw();

/] ...
}

© 2019 Shermer

for(int i=0; i<10; i++) {
shapes[i]->draw();

}

Inheritance and Polymorphism 20




N

Example of Extension

class Dog { BorderCollie* lassie =
public: new BorderCollie(...);
void bark();
double getWeight(); lassie->bark();
/] ... cout << lassie->getWeight()
3 << endl;
lassie->herd();
class BorderCollie: public Dog {
public:
void herd();
/] ...

}

© 2019 Shermer

Inheritance and Polymorphism 21




