Strings and Pattern Matching

Sections 12.1 and 12.3
alblalcl|lalalb
1
alblalcl|lalb
4 4 3 2
alblalclalb
1.
N

© 2004 Goodrich, Tamassia Pattern Matching

Strings

A string is a sequence of
characters
#® Examples of strings:
s C++program
= HTML document
= DNA sequence
= Digitized image

N

S .
(" » R -
I b s .]
\1'-."7. % -. o~ - . -
\‘.;_‘w o ¥

S N _ ~ o |
..\r'\ .]
N T
[S '\600 (gg\\&\\\"
, o o3

Let P be a string of size m

An alphabet 2'is the set of

possible characters for a
family of strings
#® Example of alphabets:
n ASCII
= Unicode

" {OI 1}
" {AI CI GI T}

© 2004 Goodrich, Tamassia

A substring PJi .. j] of P is the
subsequence of P consisting of
the characters with ranks
between i and j

A prefix of P is a substring of
the type PJO .. i]

A suffix of P is a substring of
the type P[i..m — 1]

Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P

Applications:

Pattern Matching

Text editors
Search engines
Biological research

Brute-Force Pattern Matching \K

N

L/

The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

= a match is found, or

= all placements of the pattern
have been tried

Brute-force pattern matching
runs in time O(nm)
Example of worst case:
m [=aaa...ah
= P=aaah

= May occur in images and
DNA sequences

= unlikely in English text

© 2004 Goodrich, Tamassia

A\
N\
N

g

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of size m

Output starting index of a
substring of T equal to P or -1
If no such substring exists

for i< 0ton—-m
{ test shift i of the pattern }
j<« 0
while j<m A T[i +|] = P[j]
J«]+1
if j=m
return | {match at i}

return -1 {no match anywhere}

Pattern Matching 3

N

Boyer-Moore Heuristics

The Boyer-Moore’s pattern matching algorithm is based on two

heuristics

Looking-glass heuristic: Compare P with a subsequence of T
moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] =c
= If P contains c, shift P to align the last occurrence of c in P with TJ[i]
» Else, shift P to align P[0] with TJi + 1]

Example
a plajt|{tje|r|n mia|t|{c|h|i|n]|g all|glo|r|i|[t{h{m
1 3 5 1110 9 8 7
r{ijt|{h|m r{irjt{h|m r{irjt|{h|m riiltlh|m
N, A R 4 R\ 4
riijt|{h|m riijt{h|m r{ir|{t|hfm

© 2004 Goodrich, Tamassia Pattern Matching 4

Last-Occurrence Function

N

Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet X to build the last-occurrence function L mapping 2’ to
integers, where L(c) is defined as

= the largest index i such that P[i] =c or
= -1 if no such index exists

#® Example:
. Z={a b, c,d} C d
s P =abacab L(c) 4 5 3 =4

The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m +),
where m is the size of P and s is the size of >

© 2004 Goodrich, Tamassia Pattern Matching 5

4R
N

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch(T, P, 2)

L < lastOccurenceFunction(P, 2')
< m-1
jJ«m-=1
repeat
it T[i] = PJ[j]
if =0
return i { matchati }
else
l<—1-1
J«]-1
else
{ character-jump }
| < L[T[i]]
< 1+m-min(j, 1+ 1)
jem-1
until i>n-1
return —1 { no match }

© 2004 Goodrich, Tamassia

Case1l: j<1+|

Case 2: 1 +1<]

Pattern Matching

Example

N

alblalclala ald|clalblal|c]|a
1
alblalcl|lalb
A 41 3 13 12 11 10 9
alblalc|a alblalc|a
L 5 7
alblalc b alblalclalb
4 .4
albla alb

© 2004 Goodrich, Tamassia

Pattern Matching

N

Analysis

®

@

© 2004 Goodrich, Tamassia

Boyer-Moore’s algorithm
runs in time O(nm +)

Example of worst case:
m [=aaa...a
» P =baaa

The worst case may occur in
images and DNA sequences
but is unlikely in English text

Boyer-Moore's algorithm is
significantly faster than the
brute-force algorithm on
English text

QD

oo |
01| D

D |~ D

D (W (D

11

10

QD

DO DI |D

QD |00 QD |

y 3l

17

14

13

Pattern Matching

24

21

20

19

The KMP Algorithm

Knuth-Morris-Pratt’s algorithm
compares the pattern to the

N

text in left-to-right, but shifts | .| al bl al al bl x

the pattern more intelligently
than the brute-force algorithm. I

@ When_a mismatch occurs, | al bl al al bl a
what is the most we can shift
the pattern so as to avoid
redundant comparisons?

al bl al a| b| a

#® Answer: the largest prefix of |

P[0..j] that is a suffix of P[1..j] I |
No need to] - Resume

repeat these comparing
comparisons here

© 2004 Goodrich, Tamassia Pattern Matching 9

KMP Failure Function

largest prefix of P[0..j] that is |

also a suffix of P[1..j]

#® Knuth-Morris-Pratt’s
algorithm modifies the brute-

force algorithm so that if a

mismatch occurs at PJ[j] # T[i]
weset j« F(j-1) FG - 1)1

© 2004 Goodrich, Tamassia Pattern Matching

p
U
Knuth-Morris-Pratt’s
: J 0 2 5
algorithm preprocesses the _
pattern to find matches of Phlfa | b | a a
prefixes of the pattern with FG)| 0|01 3
the pattern itself
The failure function F(j) is .|.la|blala|b|x
defined as the size of the

10

The KMP Algorithm

p
4
The failure function can be Algorithm KMPMatch(T, P)
represented by an array and F « failureFunction(P)
can be computed in O(m) time }:8
At each iteration of the while- while i <n
loop, either if T_[]Icl = P[]]
- If j=m-—
= i increases by one, or return i— j { match }
= the shift amount i —j else
increases by at least one l<—1+1
(observe that F(j — 1) <)) Je—J+1
Hence, there are no more elseif >0
than 2n iterations of the j<F[j-1]
while-loop else

l<—i1+1

#® Thus, KMP’s algorithm runs in return —1 { no match }

optimal time O(m + n)

© 2004 Goodrich, Tamassia Pattern Matching 11

Computing the Failure

© 2004 Goodrich, Tamassia

Function

The failure function can be
represented by an array and
can be computed in O(m) time

The construction is similar to
the KMP algorithm itself

At each iteration of the while-
loop, either
= iincreases by one, or
= the shift amount i —j
increases by at least one
(observe that F(j — 1) <))
Hence, there are no more
than 2m iterations of the
while-loop

N

\lgg

Algorithm failureFunction(P)
F[0] « O
I« 1
j<«0
while i <m
if P[i] = PJ[j]
{we have matched j + 1 chars}
Fli] <« j+1
<« 1+1
jJ<—j+1
else if | >0 then
{use failure function to shift P}
J«<FlI-1]
else
F[i] < 0 { no match }
< 1+1

Pattern Matching

Example

i
N
alblalc|ala|blalc]|cl|lalblalcla]l|b
1 2 < 6
alblalclal|b
/
alblalclal|b
8 9 1011 12
alblalclal|b
13
alblalclal|b

i lo|l1]2|3]|4]s5s

14 15 16 17 18 19

Phlla| b |la|c|a]6b Al lellzln

F)lo|lo|1]0]|1]2

© 2004 Goodrich, Tamassia Pattern Matching

