
© 2004 Goodrich, Tamassia Pattern Matching 1

Strings and Pattern Matching

1

a b a c a a b

234

a b a c a b

a b a c a b

Sections 12.1 and 12.3

© 2004 Goodrich, Tamassia Pattern Matching 2

Strings
A string is a sequence of
characters

Examples of strings:
◼ C++program

◼ HTML document

◼ DNA sequence

◼ Digitized image

An alphabet S is the set of
possible characters for a
family of strings

Example of alphabets:
◼ ASCII

◼ Unicode

◼ {0, 1}

◼ {A, C, G, T}

Let P be a string of size m
◼ A substring P[i .. j] of P is the

subsequence of P consisting of
the characters with ranks
between i and j

◼ A prefix of P is a substring of
the type P[0 .. i]

◼ A suffix of P is a substring of
the type P[i ..m - 1]

Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P

Applications:
◼ Text editors

◼ Search engines

◼ Biological research

© 2004 Goodrich, Tamassia Pattern Matching 3

Brute-Force Pattern Matching
The brute-force pattern
matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either

◼ a match is found, or

◼ all placements of the pattern
have been tried

Brute-force pattern matching
runs in time O(nm)

Example of worst case:
◼ T = aaa … ah

◼ P = aaah

◼ may occur in images and
DNA sequences

◼ unlikely in English text

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern
P of size m

Output starting index of a
substring of T equal to P or -1
if no such substring exists

for i  0 to n - m

{ test shift i of the pattern }

j  0

while j < m  T[i + j] = P[j]

j  j + 1

if j = m

return i {match at i}

return -1 {no match anywhere}

© 2004 Goodrich, Tamassia Pattern Matching 4

Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two
heuristics

Looking-glass heuristic: Compare P with a subsequence of T
moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

◼ If P contains c, shift P to align the last occurrence of c in P with T[i]

◼ Else, shift P to align P[0] with T[i + 1]

Example

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

© 2004 Goodrich, Tamassia Pattern Matching 5

Last-Occurrence Function

Boyer-Moore’s algorithm preprocesses the pattern P and the
alphabet S to build the last-occurrence function L mapping S to
integers, where L(c) is defined as
◼ the largest index i such that P[i] = c or

◼ -1 if no such index exists

Example:
◼ S = {a, b, c, d}

◼ P = abacab

The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m + s),
where m is the size of P and s is the size of S

c a b c d

L(c) 4 5 3 -1

© 2004 Goodrich, Tamassia Pattern Matching 6

m - j

i

j l

. a

. . . . b a

. . . . b a

j

Case 1: j  1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, S)

L  lastOccurenceFunction(P, S)
i  m - 1
j  m - 1
repeat

if T[i] = P[j]
if j = 0

return i { match at i }
else

i  i - 1
j  j - 1

else
{ character-jump }
l  L[T[i]]
i  i + m – min(j, 1 + l)
j  m - 1

until i > n - 1
return -1 { no match }

m - (1 + l)

i

jl

. a

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l  j

© 2004 Goodrich, Tamassia Pattern Matching 7

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

© 2004 Goodrich, Tamassia Pattern Matching 8

Analysis

Boyer-Moore’s algorithm
runs in time O(nm + s)

Example of worst case:

◼ T = aaa … a

◼ P = baaa

The worst case may occur in
images and DNA sequences
but is unlikely in English text

Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

© 2004 Goodrich, Tamassia Pattern Matching 9

The KMP Algorithm

Knuth-Morris-Pratt’s algorithm
compares the pattern to the
text in left-to-right, but shifts
the pattern more intelligently
than the brute-force algorithm.

When a mismatch occurs,
what is the most we can shift
the pattern so as to avoid
redundant comparisons?

Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here

© 2004 Goodrich, Tamassia Pattern Matching 10

KMP Failure Function
Knuth-Morris-Pratt’s
algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

The failure function F(j) is

defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]

Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j]  T[i]

we set j  F(j - 1)

j 0 1 2 3 4 5

P[j] a b a a b a

F(j) 0 0 1 1 2 3

x

j

. . a b a a b

a b a a b a

F(j - 1)

a b a a b a

© 2004 Goodrich, Tamassia Pattern Matching 11

The KMP Algorithm
The failure function can be
represented by an array and
can be computed in O(m) time

At each iteration of the while-
loop, either

◼ i increases by one, or

◼ the shift amount i - j

increases by at least one
(observe that F(j - 1) < j)

Hence, there are no more
than 2n iterations of the

while-loop

Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F  failureFunction(P)
i  0
j  0
while i < n

if T[i] = P[j]
if j = m - 1

return i - j { match }
else

i  i + 1
j  j + 1

else
if j > 0

j  F[j - 1]
else

i  i + 1
return -1 { no match }

© 2004 Goodrich, Tamassia Pattern Matching 12

Computing the Failure
Function

The failure function can be
represented by an array and
can be computed in O(m) time

The construction is similar to
the KMP algorithm itself

At each iteration of the while-
loop, either

◼ i increases by one, or

◼ the shift amount i - j

increases by at least one
(observe that F(j - 1) < j)

Hence, there are no more
than 2m iterations of the

while-loop

Algorithm failureFunction(P)

F[0]  0
i  1
j  0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i]  j + 1
i  i + 1
j  j + 1

else if j > 0 then
{use failure function to shift P}
j  F[j - 1]

else
F[i]  0 { no match }
i  i + 1

© 2004 Goodrich, Tamassia Pattern Matching 13

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 5

P[j] a b a c a b

F(j) 0 0 1 0 1 2

