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Strings and Pattern Matching
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a b a c a a b
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a b a c a b

a b a c a b

Sections 12.1 and 12.3
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Strings
A string is a sequence of 
characters

Examples of strings:
◼ C++program

◼ HTML document

◼ DNA sequence

◼ Digitized image

An alphabet S is the set of 
possible characters for a 
family of strings

Example of alphabets:
◼ ASCII

◼ Unicode

◼ {0, 1}

◼ {A, C, G, T}

Let P be a string of size m
◼ A substring P[i .. j] of P is the 

subsequence of P consisting of 
the characters with ranks 
between i and j

◼ A prefix of P is a substring of 
the type P[0 .. i]

◼ A suffix of P is a substring of 
the type P[i ..m - 1] 

Given strings T (text) and P
(pattern), the pattern matching 
problem consists of finding a 
substring of T equal to P

Applications:
◼ Text editors

◼ Search engines

◼ Biological research



© 2004 Goodrich, Tamassia Pattern Matching 3

Brute-Force Pattern Matching
The brute-force pattern 
matching algorithm compares 
the pattern P with the text T
for each possible shift of P
relative to T, until either

◼ a match is found, or

◼ all placements of the pattern 
have been tried

Brute-force pattern matching 
runs in time O(nm)

Example of worst case:
◼ T = aaa … ah

◼ P = aaah

◼ may occur in images and 
DNA sequences

◼ unlikely in English text

Algorithm BruteForceMatch(T, P)

Input text T of size n and pattern 
P of size m

Output starting index of a 
substring of T equal to P or -1
if no such substring exists 

for i  0 to n - m

{ test shift i of the pattern }

j  0

while j < m  T[i + j] = P[j]

j  j + 1

if  j = m

return  i {match at i}

return  -1 {no match anywhere}
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Boyer-Moore Heuristics
The Boyer-Moore’s pattern matching algorithm is based on two 
heuristics

Looking-glass heuristic: Compare P with a subsequence of T
moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

◼ If P contains c, shift P to align the last occurrence of c in P with T[i] 

◼ Else, shift P to align P[0] with T[i + 1]

Example 

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011
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Last-Occurrence Function

Boyer-Moore’s algorithm preprocesses the pattern P and the 
alphabet S to build the last-occurrence function L mapping S to 
integers, where L(c) is defined as
◼ the largest index i such that P[i] = c or

◼ -1 if no such index exists 

Example:
◼ S = {a, b, c, d}

◼ P = abacab

The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters

The last-occurrence function can be computed in time O(m + s), 
where m is the size of P and s is the size of S

c a b c d

L(c) 4 5 3 -1
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m - j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1: j  1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, S)

L  lastOccurenceFunction(P, S )
i  m - 1
j  m - 1
repeat 

if T[i] = P[j]
if  j = 0

return  i  { match at i }
else

i  i - 1
j  j - 1

else
{ character-jump }
l  L[T[i]]
i  i + m – min(j, 1 + l)
j  m - 1

until  i > n - 1
return  -1 { no match }

m - (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l  j
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Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113
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Analysis

Boyer-Moore’s algorithm 
runs in time O(nm + s)

Example of worst case:

◼ T = aaa … a

◼ P = baaa

The worst case may occur in 
images and DNA sequences 
but is unlikely in English text

Boyer-Moore’s algorithm is 
significantly faster than the 
brute-force algorithm on 
English text

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324
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The KMP Algorithm

Knuth-Morris-Pratt’s algorithm 
compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently 
than the brute-force algorithm. 

When a mismatch occurs, 
what is the most we can shift 
the pattern so as to avoid 
redundant comparisons?

Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b . . . . .

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here
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KMP Failure Function
Knuth-Morris-Pratt’s 
algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself

The failure function F(j) is 

defined as the size of the 
largest prefix of P[0..j] that is 
also a suffix of P[1..j]

Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j]  T[i] 

we set  j  F(j - 1)

j 0 1 2 3 4 5

P[j] a b a a b a

F(j) 0 0 1 1 2 3

x

j

. . a b a a b . . . . .

a b a a b a

F(j - 1)

a b a a b a
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The KMP Algorithm
The failure function can be 
represented by an array and 
can be computed in O(m) time

At each iteration of the while-
loop, either

◼ i increases by one, or

◼ the shift amount i - j

increases by at least one 
(observe that F(j - 1) < j)

Hence, there are no more 
than 2n iterations of the 

while-loop

Thus, KMP’s algorithm runs in 
optimal time O(m + n)

Algorithm KMPMatch(T, P)

F  failureFunction(P)
i  0
j  0
while i < n

if T[i] = P[j]
if  j = m - 1

return  i - j { match }
else

i  i + 1
j  j + 1

else
if  j > 0

j  F[j - 1]
else

i  i + 1
return  -1 { no match }
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Computing the Failure 
Function

The failure function can be 
represented by an array and 
can be computed in O(m) time

The construction is similar to
the KMP algorithm itself

At each iteration of the while-
loop, either

◼ i increases by one, or

◼ the shift amount i - j

increases by at least one 
(observe that F(j - 1) < j)

Hence, there are no more 
than 2m iterations of the 

while-loop

Algorithm failureFunction(P)

F[0]  0
i  1
j  0
while i < m

if P[i] = P[j]
{we have matched j + 1 chars}
F[i]  j + 1
i  i + 1
j  j + 1

else if  j > 0 then
{use failure function to shift P}
j  F[j - 1]

else
F[i]  0 { no match }
i  i + 1
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Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 5

P[j] a b a c a b

F(j) 0 0 1 0 1 2


