The Greedy Method, Text Compression, and Tries

Sections 12.4 and 12.5

© 2004 Goodrich, Tamassia

Greedy Method and Compression

The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
 - configurations: different choices, collections, or values to find
 - objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

© 2004 Goodrich, Tamassia Greedy Method and Compression

Text Compression

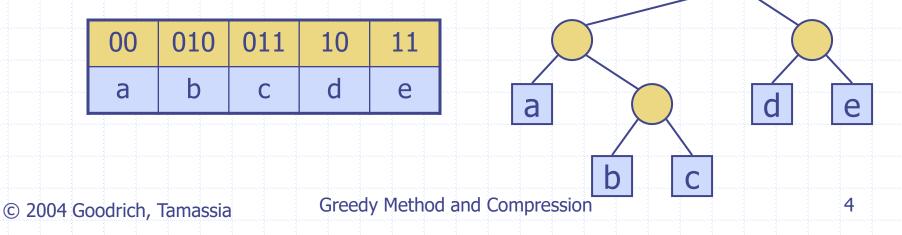
- Given a string X, efficiently encode X into a smaller string Y
 - Saves memory and/or bandwidth

A good approach: Huffman encoding

- Compute frequency f(c) for each character c.
- Encode high-frequency characters with short code words
- No code word is a prefix for another code
- Use an optimal encoding tree to determine the code words

Encoding Tree Example

- A code is a mapping of each character of an alphabet to a binary code-word
- A prefix code is a binary code such that no code-word is the prefix of another code-word
- An encoding tree represents a prefix code
 - Each external node stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)



Encoding Tree Optimization

Given a text string *X*, we want to find a prefix code for the characters of *X* that yields a small encoding for *X*

 T_2

a

- Frequent characters should have short code-words
- Rare characters should have long code-words
- Example

 T_1

• X = abracadabra

a

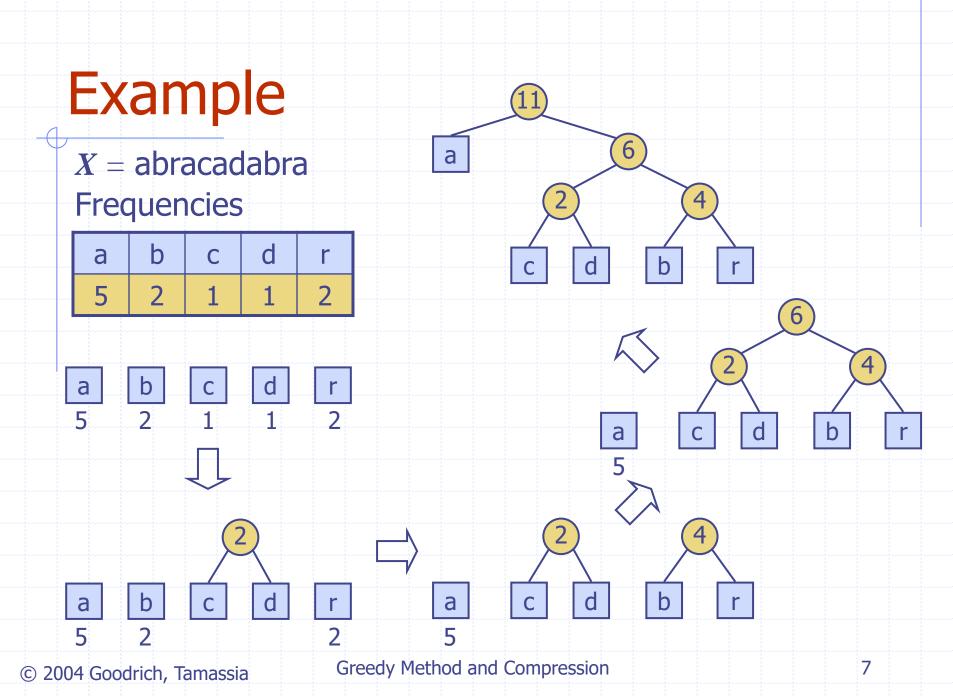
- *T*₁ encodes *X* into 29 bits
- *T*₂ encodes *X* into 24 bits

Huffman's Algorithm

 Given a string X, Huffman's algorithm construct a prefix code the minimizes the size of the encoding of X

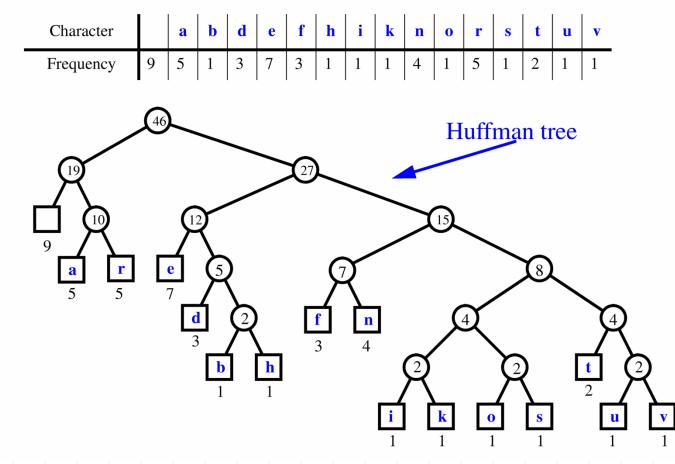
- It runs in time
 O(n + d log d), where
 n is the size of X
 and d is the number
 of distinct characters
 of X
- A heap-based priority queue is used as an auxiliary structure

Algorithm *HuffmanEncoding(X)* **Input** string *X* of size *n* **Output** optimal encoding tree for X $C \leftarrow distinctCharacters(X)$ computeFrequencies(C, X) $Q \leftarrow$ new empty heap for all $c \in C$ $T \leftarrow$ new single-node tree storing cQ.insert(getFrequency(c), T)**while** *Q.size*() > 1 $f_1 \leftarrow Q.minKey()$ $T_1 \leftarrow Q.removeMin()$ $f_2 \leftarrow Q.minKey()$ $T_2 \leftarrow Q.removeMin()$ $T \leftarrow join(T_1, T_2)$ $Q.insert(f_1 + f_2, T)$ return Q.removeMin()



Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark



Greedy Method and Compression

The Fractional Knapsack Problem (not in book)

- Given: A set S of n items, with each item i having
 - b_i a positive benefit
 - w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
 - In this case, we let $x_i \le w_i$ denote the amount we take of item i
 - Objective: maximize

$$\sum_{i\in S} b_i(x_i / w_i)$$

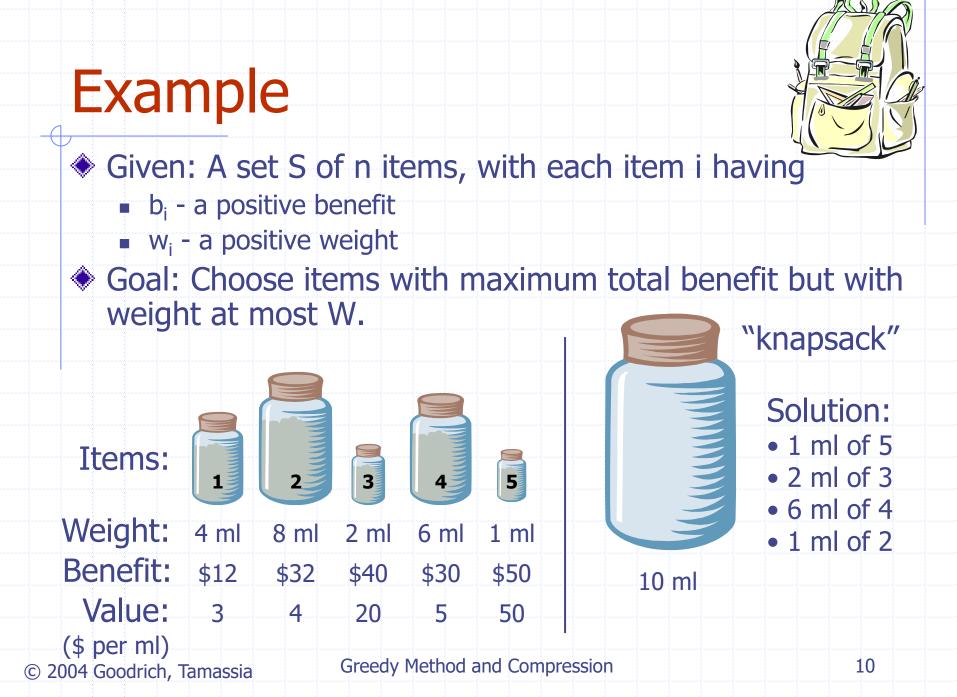
Constraint:

© 2004 Goodrich, Tamassia

Greedy Method and Compression

 $\sum x_i \leq W$

 $i \in S$



The Fractional Knapsack Algorithm

Greedy choice: Keep taking item with highest value (benefit to weight ratio) • Since $\sum b_i (x_i / w_i) = \sum (b_i / w_i) x_i$ • Run time: $O(n \log^{i \in S} n)$. Why? Correctness: Suppose there is a better solution there is an item i with higher value than a chosen item j, but $x_i < w_i$, $x_i > 0$ and $v_i < v_i$ If we substitute some i with j, we get a better solution • How much of i: $min\{w_i-x_i, x_i\}$ Thus, there is no better solution than the greedy one

© 2004 Goodrich, Tamassia

Greedy Method and Compression

Algorithm *fractionalKnapsack(S, W)*

Input: set *S* of items w/ benefit b_i and weight w_i ; max. weight *W* **Output:** amount x_i of each item *i* to maximize benefit w/ weight at most *W*

for each item i in S

 $x_i \leftarrow 0$

 $v_i \leftarrow b_i / w_i$ {value}

 $w \leftarrow 0$ {total weight}

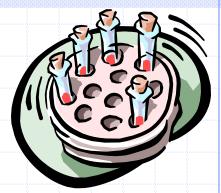
while w < W

remove item i w/ highest v_i

 $x_i \leftarrow \min\{w_i, W - w\}$

 $w \leftarrow w + \min\{w_i, W - w\}$

Task Scheduling (not in book)



Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where s_i < f_i)

Goal: Perform all the tasks using a minimum number of "machines."

Machine 3			<u>l</u>	<u> </u>	<u></u>	<u></u>	<u></u>	<u></u>	<u> </u>	
Machine 2					<u></u>					
Machine 1										
Widefinite 1		•								
	L	T		Г		— T	Т	T	- I	Т
		1	2	3	4	5	6	7	8	q
		•	۲	J	T	J	J		J	3

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: O(n log n). Why?
- Correctness: Suppose there is a better schedule.
 - We can use k-1 machines
 - The algorithm uses k
 - Let i be first task scheduled on machine k
 - Task i must conflict with k-1 other tasks
 - But that means there is no non-conflicting schedule using k-1 machines
 Irich Tamassia
 Greedy Method and Compression

© 2004 Goodrich, Tamassia

Algorithm *taskSchedule(T)*

Input: set *T* of tasks w/ start time s_i and finish time f_i

Output: non-conflicting schedule with minimum number of machines

 $m \leftarrow 0$ {no. of machines}

while T is not empty

remove task i w/ smallest s_i if there's a machine j for i then schedule i on machine j

else

 $m \leftarrow m + 1$

schedule i on machine m

Example



Given: a set T of n tasks, each having:

- A start time, s_i
- A finish time, f_i (where s_i < f_i)
- [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

Machine 3									
Machine 2									
Machine 1									
	1		I	I	I	I	I	I	I
	1	2	3	4	5	6	7	8	9

Preprocessing Strings

- Preprocessing the pattern speeds up pattern matching queries
 - After preprocessing the pattern, KMP's algorithm performs pattern matching in time proportional to the text size
- If the text is large, immutable and searched for often (e.g., works by Shakespeare), we may want to preprocess the text instead of the pattern
- A trie is a compact data structure for representing a set of strings, such as all the words in a text
 - A trie supports pattern matching queries in time proportional to the pattern size

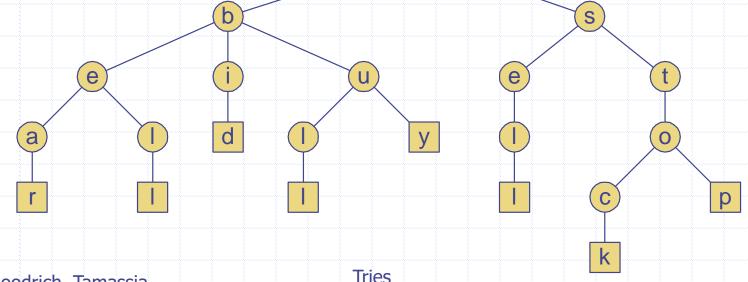
Standard Tries

The standard trie for a set of strings S is an ordered tree such that:

- Each node but the root is labeled with a character
- The children of a node are alphabetically ordered
- The paths from the external nodes to the root yield the strings of S

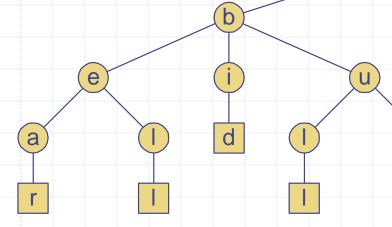
Example: standard trie for the set of strings

S = { bear, bell, bid, bull, buy, sell, stock, stop }



Analysis of Standard Tries

- A standard trie uses O(n) space and supports searches, insertions and deletions in time O(dm), where:
 - *n* total size of the strings in S
 - *m* size of the string parameter of the operation
 - *d* size of the alphabet

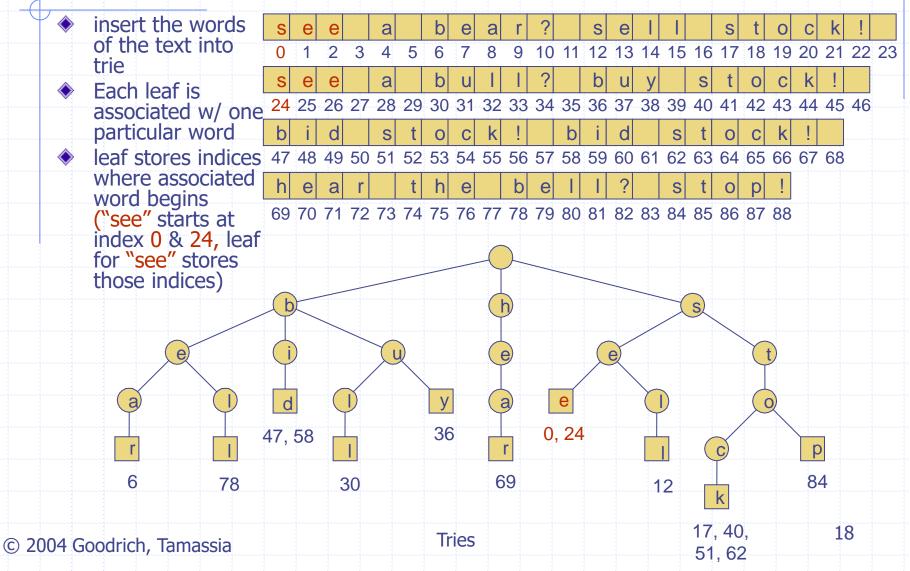


S

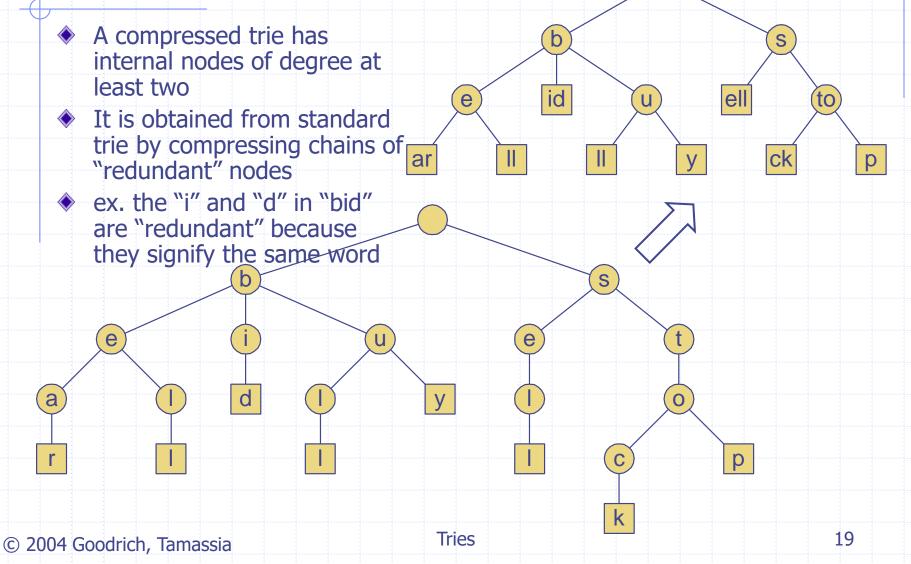
0

е

Word Matching with a Trie

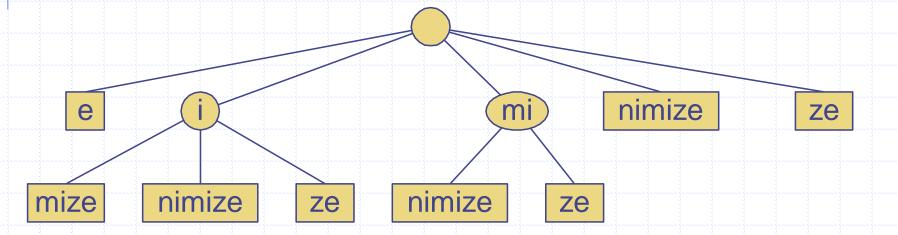


Compressed Tries



Suffix Trie

The suffix trie of a string X is the compressed trie of all the suffixes of X



Analysis of Suffix Tries

- Compact representation of the suffix trie for a string X of size n from an alphabet of size d
 - Uses O(n) space
 - Supports arbitrary pattern matching queries in X in O(dm) time, where m is the size of the pattern
 - Can be constructed in O(n) time

