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The Greedy Method, Text 
Compression, and Tries

Sections 12.4 and 12.5
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The Greedy Method 
Technique

The greedy method is a general algorithm 
design paradigm, built on the following 
elements:
◼ configurations: different choices, collections, or 

values to find

◼ objective function: a score assigned to 
configurations, which we want to either maximize or 
minimize

It works best when applied to problems with the 
greedy-choice property: 
◼ a globally-optimal solution can always be found by a 

series of local improvements from a starting 
configuration.
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Text Compression

Given a string X, efficiently encode X into a 
smaller string Y
◼ Saves memory and/or bandwidth

A good approach: Huffman encoding
◼ Compute frequency f(c) for each character c.

◼ Encode high-frequency characters with short code 
words

◼ No code word is a prefix for another code

◼ Use an optimal encoding tree to determine the 
code words
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Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary 
code-word

A prefix code is a binary code such that no code-word is the 
prefix of another code-word

An encoding tree represents a prefix code

◼ Each external node stores a character

◼ The code word of a character is given by the path from the root to 
the external node storing the character (0 for a left child and 1 for a 
right child)
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Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters 
of X that yields a small encoding for X

◼ Frequent characters should have short code-words

◼ Rare characters should have long code-words

Example
◼ X = abracadabra

◼ T1 encodes X into 29 bits

◼ T2 encodes X into 24 bits
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Huffman’s Algorithm
Given a string X, 
Huffman’s algorithm 
construct a prefix 
code the minimizes 
the size of the 
encoding of X

It runs in time
O(n + d log d), where 
n is the size of X
and d is the number 
of distinct characters 
of X

A heap-based 
priority queue is 
used as an auxiliary 
structure

Algorithm HuffmanEncoding(X)

Input string X of size n

Output optimal encoding tree for X

C  distinctCharacters(X)

computeFrequencies(C, X)

Q  new empty heap 

for all c  C

T  new single-node tree storing c

Q.insert(getFrequency(c), T)

while Q.size() > 1

f1  Q.minKey()

T1  Q.removeMin()

f2  Q.minKey()

T2  Q.removeMin()

T  join(T1, T2)

Q.insert(f1 + f2, T)

return Q.removeMin()
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Example

a b c d r
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X = abracadabra
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Extended Huffman Tree Example
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The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
◼ bi - a positive benefit

◼ wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

If we are allowed to take fractional amounts, then this is 
the fractional knapsack problem.
◼ In this case, we let xi ≤ wi denote the amount we take of item i

◼ Objective: maximize

◼ Constraint:


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Example
Given: A set S of n items, with each item i having
◼ bi - a positive benefit

◼ wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3

($ per ml)

4 20 5 50

10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”
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The Fractional Knapsack 
Algorithm

Greedy choice: Keep taking 
item with highest value
(benefit to weight ratio)
◼ Since 

◼ Run time: O(n log n). Why?

Correctness: Suppose there 
is a better solution
◼ there is an item i with higher 

value than a chosen item j, 
but xi<wi, xj>0 and vi<vj

◼ If we substitute some i with j, 
we get a better solution

◼ How much of i: min{wi-xi, xj}

◼ Thus, there is no better 
solution than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i 

to maximize benefit w/ weight 
at most W

for each item i in S

xi  0

vi  bi  / wi {value}

w  0 {total weight}

while w < W 

remove item i w/ highest vi

xi  min{wi , W - w}

w  w + min{wi , W - w}




=
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Task Scheduling 
(not in book)

Given: a set T of n tasks, each having:
◼ A start time, si

◼ A finish time, fi (where si < fi)

Goal: Perform all the tasks using a minimum number of 
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2
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Task Scheduling Algorithm
Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.

◼ Run time: O(n log n). Why?

Correctness: Suppose there is a 
better schedule.

◼ We can use k-1 machines

◼ The algorithm uses k

◼ Let i be first task scheduled 
on machine k

◼ Task i must conflict with k-1 
other tasks

◼ But that means there is no 
non-conflicting schedule 
using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time si

and finish time fi

Output: non-conflicting schedule 
with minimum number of machines

m  0 {no. of machines}

while T is not empty

remove task i w/ smallest si

if there’s a machine j for i then

schedule i on machine j

else

m  m + 1

schedule i on machine m
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Example
Given: a set T of n tasks, each having:
◼ A start time, si

◼ A finish time, fi (where si < fi)

◼ [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2



© 2004 Goodrich, Tamassia Tries 15

Preprocessing Strings
Preprocessing the pattern speeds up pattern matching 
queries

◼ After preprocessing the pattern, KMP’s algorithm performs 
pattern matching in time proportional to the text size

If the text is large, immutable and searched for often 
(e.g., works by Shakespeare), we may want to 
preprocess the text instead of the pattern

A trie is a compact data structure for representing a 
set of strings, such as all the words in a text

◼ A trie supports pattern matching queries in time proportional 
to the pattern size
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Standard Tries
The standard trie for a set of strings S is an ordered tree such that:
◼ Each node but the root is labeled with a character

◼ The children of a node are alphabetically ordered

◼ The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }
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Analysis of Standard Tries
A standard trie uses O(n) space and supports 
searches, insertions and deletions in time O(dm), 
where:
n total size of the strings in S

m size of the string parameter of the operation

d size of the alphabet 
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Word Matching with a Trie
insert the words 
of the text into 
trie
Each leaf is 
associated w/ one 
particular word
leaf stores indices 
where associated 
word begins 
(“see” starts at 
index 0 & 24, leaf 
for “see” stores 
those indices)
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Compressed Tries
A compressed trie has 
internal nodes of degree at 
least two

It is obtained from standard 
trie by compressing chains of 
“redundant” nodes

ex. the “i” and “d” in “bid” 
are “redundant” because 
they signify the same word
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Suffix Trie

The suffix trie of a string X is the compressed trie of all the 
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i

0 1 2 3 4 5 6 7
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Analysis of Suffix Tries
Compact representation of the suffix trie for a string 
X of size n from an alphabet of size d
◼ Uses O(n) space
◼ Supports arbitrary pattern matching queries in X in O(dm)

time, where m is the size of the pattern
◼ Can be constructed in O(n) time
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