‘The Greedy Method, Text

Compression, and Tries

Sections 12.4 and 12.5
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The Greedy Method 4

Technique é‘?é@

J@ The greedy method is a general algorithm
design paradigm, built on the following
elements:

= configurations: different choices, collections, or
values to find

= objective function: a score assigned to
configurations, which we want to either maximize or
minimize
# It works best when applied to problems with the
greedy-choice property:
= a globally-optimal solution can always be found by a

series of local improvements from a starting

configuration.
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Text Compression

N

# Given a string X, efficiently encode X into a
smaller string Y

= Saves memory and/or bandwidth

# A good approach: Huffman encoding
= Compute frequency f(c) for each character c.

= Encode high-frequency characters with short code
words

= No code word is a prefix for another code

= Use an optimal encoding tree to determine the
code words
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Encoding Tree Example

Te A code is a mapping of each character of an alphabet to a binary
code-word

# A prefix code is a binary code such that no code-word is the
prefix of another code-word

# An encoding tree represents a prefix code
s Each external node stores a character

= The code word of a character is given by the path from the root to
the external node storing the character (0 for a left child and 1 for a

right child)

00 | 010|011 | 10 | 11

a b C d & d

b C
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Encoding Tree Optimization

# Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X

» Frequent characters should have short code-words
= Rare characters should have long code-words
#® Example
» X = abracadabra
m T, encodes X into 29 bits
= T, encodes X into 24 bits

T

N

d r
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Huffman’s Algorithm

& Algorithm HuffmanEncoding(X)

# Given a string X, Input string X of size n
Huffman’s algorithm Output optimal encoding tree for X
construct a_p_refix C « distinctCharacters(X)
code the minimizes computeFrequencies(C, X)
the size of the Q <« new empty heap
encoding of X forallc e C

# It runs in time T « new single-node tree storing ¢
O(_n +d |0_9 d), where Q.insert(getFrequency(c), T)

n is the size of X while Q.size() > 1

and d is the number f, « Q.minKey()

of distinct characters Tll « Q.removeMin()
of X f, « Q.minKey()

@ A heap-based T, < Q.removeMin()
priority queue IS T «join(T,, T))
used as an auxiliary Q.insert(f, +f,, T)
structure return Q.removeMin()
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Example

;
N
X = abracadabra
Frequencies
al|lbl|lc|d r
51211112
3 b d r 9

C
5 2 1 1 2

d C
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Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

N

k‘n

t‘u

Character | i

b‘d

i

a € 0 r S v

Frequency |9‘5‘1 ‘3|7‘3‘1 ‘1‘1‘4‘1‘5‘1‘2‘1‘1

Huffman tree

i k 0 S u v
1 1 1 1 1 1
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The Fractional Knapsack g,"sz\?

Problem (not in book) *Q‘/J@

N

|
# Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
# Goal: Choose items with maximum total benefit but with
weight at most W.

# If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
= In this case, we let x, < w; denote the amount we take of item i

= Objective: maximize Zbi (Xi / Wi)
=)
= Constraint: Z X; <W

€S
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Example e

# Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
# Goal: Choose items with maximum total benefit but with
weight at most W.

N

[~ “knapsack”
- SR |
— = Solution:
. = = el mlof5
ems: E e 2 mlof 3
: e 6 mlof 4

Weight: 4ml 8ml 2ml 6ml 1ml o 1mlof 2
Benefit: $12  $32 $40 $30 $50 10 ml

Value: 3 4 20 5 50
($ per ml)
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The Fractional Knapsack 4

Algorithm e

(

\/

& ()
# Greedy choice: Keep taking
Iitem W_Ith hlgh_est Va|l:le Algorithm fractionalKnapsack(S, W)
(benefit to weight ratio) Input: set S of items w/ benefit b,
= Since Zb (X /W) = Z(b W)X, and weight w;; max. weight W
, Output: amount x; of each item
« Run time: O(n |09 n) Why? to maximize benefit w/ weight
# Correctness: Suppose there At most W
is a better solution foreach (')tem i

m there is an item i with higher

value than a chosen item j, Vi &by Wi {value}

but x;<w;, ;>0 and v;<v; W0 {total weight}
« If we substitute some i with i while w</ W11

we get a better solution remove item 1 w/ highest v;

X; <= min{w; , W - w}

= How much of i: min{w;-x;, x;} Wew +min{w . W-w}
1!

= Thus, there is no better
solution than the greedy one
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Task Scheduling
(not in book)

# Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f; (where s; < f)

# Goal: Perform all the tasks using a minimum number of

N

\\ - 144
machines.
Machine 3 [ O I ] |
Machine2 | |
Machine 1 | ] T e e
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Task Scheduling Algorithm

# Greedy choice: consider tasks
by their start time and use as

N

few machines as possible with Algorithm taskSchedule(T)

this Orde'_" Input: set T of tasks w/ start time s;
= Run time: O(n log n). Why? and finish time f

# Correctness: Suppose there is a Output: non-conflicting schedule

better schedule. with minimum number of machines
= We can use k-1 machines m«0 {no. of machines}
= The algorithm uses k while T is not empty
= Let i be first task scheduled remove task | wi smallest s,
on machine k if there’s a machine j for i then
= Task i must conflict with k-1 schedule 1 on machine J
other tasks else
= But that means there is no memtl |
non-conflicting schedule schedule 1 on machine I

using k-1 machines
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Example

# Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f; (where s; < f)
s [1,4],[1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
# Goal: Perform all tasks on min. number of machines

N

Machine 3 ] ] )
Machine2 | . )
Machine 1 | | I S R
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Preprocessing Strings

# Preprocessing the pattern speeds up pattern matching
gueries
= After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size
# If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

# A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A trie supports pattern matching queries in time proportional
to the pattern size

N
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Standard Tries

@ The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
= The paths from the external nodes to the root yield the strings of S
#® Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

N
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Analysis of Standard Tries

L/

# A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

N
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Word Matching with a Trie

p
@ insertthewords [s[ el el [al | bl elal r] 2 |s|e Il s| t| of c| k| !
tgf_thetextinto 0123456 7 8 9 1011121314 15 16 17 18 19 20 21 22 23
@Erzl:lechleafis S| el e a bl ul 1] I]? bl u y s| t| o] c| k| !
associated w/ one 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
particular word bl i| d s| t| o] c| k| ! bl i| d s| t| o] c| k| !
# leaf stores indices 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
wgséebZZ?gglated hlelalr| |tfhle |[blel I]I1]?2 |s|t]|olp|!
(“see” starts at 69 70 7172 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8
index 0 & 24, leaf

for “see” stores

those indices)
b C@ S
e | C@ € t
I d | y C@ e I 0
47,58 36 0, 24
r | | r | C P
6 78 30 69 12 84

| | . 17, 40, 18
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# A compressed trie has
internal nodes of degree at
least two

# It is obtained from standard
trie by compressing chains of
“redundant” nodes

# ex. the “i”" and “d” in “bid”
are “redundant” because
they signify thbe sa ord
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Suffix Trie

#® The suffix trie of a string X is the compressed trie of all the
suffixes of X

N

m
0
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Analysis of Suffix Tries

T 4@ Compact representation of the suffix trie for a string
X of size n from an alphabet of size d
s Uses O(n) space

= Supports arbitrary pattern matching queries in X in O(dm)
time, where m is the size of the pattern

= Can be constructed in O(n) time

mj i
01

m
4

O | N
~ | D

nii
2 3

4,7 2,7 6, 7 2,7 6, 7
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