
© 2004 Goodrich, Tamassia Greedy Method and Compression 1

The Greedy Method, Text
Compression, and Tries

Sections 12.4 and 12.5

© 2004 Goodrich, Tamassia Greedy Method and Compression 2

The Greedy Method
Technique

The greedy method is a general algorithm
design paradigm, built on the following
elements:
◼ configurations: different choices, collections, or

values to find

◼ objective function: a score assigned to
configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:
◼ a globally-optimal solution can always be found by a

series of local improvements from a starting
configuration.

© 2004 Goodrich, Tamassia Greedy Method and Compression 3

Text Compression

Given a string X, efficiently encode X into a
smaller string Y
◼ Saves memory and/or bandwidth

A good approach: Huffman encoding
◼ Compute frequency f(c) for each character c.

◼ Encode high-frequency characters with short code
words

◼ No code word is a prefix for another code

◼ Use an optimal encoding tree to determine the
code words

© 2004 Goodrich, Tamassia Greedy Method and Compression 4

Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the
prefix of another code-word

An encoding tree represents a prefix code

◼ Each external node stores a character

◼ The code word of a character is given by the path from the root to
the external node storing the character (0 for a left child and 1 for a
right child)

a

b c

d e

00 010 011 10 11

a b c d e

© 2004 Goodrich, Tamassia Greedy Method and Compression 5

Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X

◼ Frequent characters should have short code-words

◼ Rare characters should have long code-words

Example
◼ X = abracadabra

◼ T1 encodes X into 29 bits

◼ T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

© 2004 Goodrich, Tamassia Greedy Method and Compression 6

Huffman’s Algorithm
Given a string X,
Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X

It runs in time
O(n + d log d), where
n is the size of X
and d is the number
of distinct characters
of X

A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)

Input string X of size n

Output optimal encoding tree for X

C  distinctCharacters(X)

computeFrequencies(C, X)

Q  new empty heap

for all c  C

T  new single-node tree storing c

Q.insert(getFrequency(c), T)

while Q.size() > 1

f1  Q.minKey()

T1  Q.removeMin()

f2  Q.minKey()

T2  Q.removeMin()

T  join(T1, T2)

Q.insert(f1 + f2, T)

return Q.removeMin()

© 2004 Goodrich, Tamassia Greedy Method and Compression 7

Example

a b c d r

5 2 1 1 2

X = abracadabra

Frequencies

ca rdb

5 2 1 1 2

ca rdb

2

5 2 2

ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

© 2004 Goodrich, Tamassia Greedy Method and Compression 8

Extended Huffman Tree Example

© 2004 Goodrich, Tamassia Greedy Method and Compression 9

The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
◼ bi - a positive benefit

◼ wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
◼ In this case, we let xi ≤ wi denote the amount we take of item i

◼ Objective: maximize

◼ Constraint:


Si

iii wxb)/(





Si

i Wx

© 2004 Goodrich, Tamassia Greedy Method and Compression 10

Example
Given: A set S of n items, with each item i having
◼ bi - a positive benefit

◼ wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3

($ per ml)

4 20 5 50

10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

© 2004 Goodrich, Tamassia Greedy Method and Compression 11

The Fractional Knapsack
Algorithm

Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)
◼ Since

◼ Run time: O(n log n). Why?

Correctness: Suppose there
is a better solution
◼ there is an item i with higher

value than a chosen item j,
but xi<wi, xj>0 and vi<vj

◼ If we substitute some i with j,
we get a better solution

◼ How much of i: min{wi-xi, xj}

◼ Thus, there is no better
solution than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit w/ weight
at most W

for each item i in S

xi  0

vi  bi / wi {value}

w  0 {total weight}

while w < W

remove item i w/ highest vi

xi  min{wi , W - w}

w  w + min{wi , W - w}




=
Si

iii

Si

iii xwbwxb)/()/(

© 2004 Goodrich, Tamassia Greedy Method and Compression 12

Task Scheduling
(not in book)

Given: a set T of n tasks, each having:
◼ A start time, si

◼ A finish time, fi (where si < fi)

Goal: Perform all the tasks using a minimum number of
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2

© 2004 Goodrich, Tamassia Greedy Method and Compression 13

Task Scheduling Algorithm
Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.

◼ Run time: O(n log n). Why?

Correctness: Suppose there is a
better schedule.

◼ We can use k-1 machines

◼ The algorithm uses k

◼ Let i be first task scheduled
on machine k

◼ Task i must conflict with k-1
other tasks

◼ But that means there is no
non-conflicting schedule
using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time si

and finish time fi

Output: non-conflicting schedule
with minimum number of machines

m  0 {no. of machines}

while T is not empty

remove task i w/ smallest si

if there’s a machine j for i then

schedule i on machine j

else

m  m + 1

schedule i on machine m

© 2004 Goodrich, Tamassia Greedy Method and Compression 14

Example
Given: a set T of n tasks, each having:
◼ A start time, si

◼ A finish time, fi (where si < fi)

◼ [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2

© 2004 Goodrich, Tamassia Tries 15

Preprocessing Strings
Preprocessing the pattern speeds up pattern matching
queries

◼ After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size

If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

A trie is a compact data structure for representing a
set of strings, such as all the words in a text

◼ A trie supports pattern matching queries in time proportional
to the pattern size

© 2004 Goodrich, Tamassia Tries 16

Standard Tries
The standard trie for a set of strings S is an ordered tree such that:
◼ Each node but the root is labeled with a character

◼ The children of a node are alphabetically ordered

◼ The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

© 2004 Goodrich, Tamassia Tries 17

Analysis of Standard Tries
A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:
n total size of the strings in S

m size of the string parameter of the operation

d size of the alphabet

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

© 2004 Goodrich, Tamassia Tries 18

Word Matching with a Trie
insert the words
of the text into
trie
Each leaf is
associated w/ one
particular word
leaf stores indices
where associated
word begins
(“see” starts at
index 0 & 24, leaf
for “see” stores
those indices)

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6

l

78

d

47, 58
l

30

y

36
l

12
k

17, 40,

51, 62

p

84

h

e

r

69

a

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

a r

87 88

© 2004 Goodrich, Tamassia Tries 19

Compressed Tries
A compressed trie has
internal nodes of degree at
least two

It is obtained from standard
trie by compressing chains of
“redundant” nodes

ex. the “i” and “d” in “bid”
are “redundant” because
they signify the same word

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

© 2004 Goodrich, Tamassia Tries 20

Suffix Trie

The suffix trie of a string X is the compressed trie of all the
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i

0 1 2 3 4 5 6 7

© 2004 Goodrich, Tamassia Tries 21

Analysis of Suffix Tries
Compact representation of the suffix trie for a string
X of size n from an alphabet of size d
◼ Uses O(n) space
◼ Supports arbitrary pattern matching queries in X in O(dm)

time, where m is the size of the pattern
◼ Can be constructed in O(n) time

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i

0 1 2 3 4 5 6 7

