‘The Greedy Method, Text

Compression, and Tries

Sections 12.4 and 12.5

© 2004 Goodrich, Tamassia Greedy Method and Compression 1

The Greedy Method 4

Technique é‘?é@

J@ The greedy method is a general algorithm
design paradigm, built on the following
elements:

= configurations: different choices, collections, or
values to find

= objective function: a score assigned to
configurations, which we want to either maximize or
minimize
It works best when applied to problems with the
greedy-choice property:
= a globally-optimal solution can always be found by a

series of local improvements from a starting

configuration.
© 2004 Goodrich, Tamassia Greedy Method and Compression 2

N

Text Compression

N

Given a string X, efficiently encode X into a
smaller string Y

= Saves memory and/or bandwidth

A good approach: Huffman encoding
= Compute frequency f(c) for each character c.

= Encode high-frequency characters with short code
words

= No code word is a prefix for another code

= Use an optimal encoding tree to determine the
code words

© 2004 Goodrich, Tamassia Greedy Method and Compression 3

Encoding Tree Example

Te A code is a mapping of each character of an alphabet to a binary
code-word

A prefix code is a binary code such that no code-word is the
prefix of another code-word

An encoding tree represents a prefix code
s Each external node stores a character

= The code word of a character is given by the path from the root to
the external node storing the character (0 for a left child and 1 for a

right child)

00 | 010|011 | 10 | 11

a b C d & d

b C

© 2004 Goodrich, Tamassia Greedy Method and Compression 4

Encoding Tree Optimization

Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X

» Frequent characters should have short code-words
= Rare characters should have long code-words
#® Example
» X = abracadabra
m T, encodes X into 29 bits
= T, encodes X into 24 bits

T

N

d r
© 2004 Goodrich, Tamassia Greedy Method and Compression 5

Huffman’s Algorithm

& Algorithm HuffmanEncoding(X)

Given a string X, Input string X of size n
Huffman’s algorithm Output optimal encoding tree for X
construct a_p_refix C « distinctCharacters(X)
code the minimizes computeFrequencies(C, X)
the size of the Q <« new empty heap
encoding of X forallc e C

It runs in time T « new single-node tree storing ¢
O(_n +d |0_9 d), where Q.insert(getFrequency(c), T)

n is the size of X while Q.size() > 1

and d is the number f, « Q.minKey()

of distinct characters Tll « Q.removeMin()
of X f, « Q.minKey()

@ A heap-based T, < Q.removeMin()
priority queue IS T «join(T,, T))
used as an auxiliary Q.insert(f, +f,, T)
structure return Q.removeMin()

© 2004 Goodrich, Tamassia Greedy Method and Compression

Example

;
N
X = abracadabra
Frequencies
al|lbl|lc|d r
51211112
3 b d r 9

C
5 2 1 1 2

d C

11 5
%
e m A

a b d r a

5 2 2 5
© 2004 Goodrich, Tamassia Greedy Method and Compression

Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

N

k‘n

t‘u

Character | i

b‘d

i

a € 0 r S v

Frequency |9‘5‘1 ‘3|7‘3‘1 ‘1‘1‘4‘1‘5‘1‘2‘1‘1

Huffman tree

i k 0 S u v
1 1 1 1 1 1

© 2004 Goodrich, Tamassia Greedy Method and Compression

The Fractional Knapsack g,"sz\?

Problem (not in book) *Q‘/J@

N

|
Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W.

If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
= In this case, we let x, < w; denote the amount we take of item i

= Objective: maximize Zbi (Xi / Wi)
=)
= Constraint: Z X; <W

€S
© 2004 Goodrich, Tamassia Greedy Method and Compression 9

Example e

Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W.

N

[~ “knapsack”
- SR |
— = Solution:
. = = el mlof5
ems: E e 2 mlof 3
: e 6 mlof 4

Weight: 4ml 8ml 2ml 6ml 1ml o 1mlof 2
Benefit: $12 $32 $40 $30 $50 10 ml

Value: 3 4 20 5 50
($ per ml)

© 2004 Goodrich, Tamassia Greedy Method and Compression 10

e

The Fractional Knapsack 4

Algorithm e

(

\/

& ()
Greedy choice: Keep taking
Iitem W_Ith hlgh_est Va|l:le Algorithm fractionalKnapsack(S, W)
(benefit to weight ratio) Input: set S of items w/ benefit b,
= Since Zb (X /W) = Z(b W)X, and weight w;; max. weight W
, Output: amount x; of each item
« Run time: O(n |09 n) Why? to maximize benefit w/ weight
Correctness: Suppose there At most W
is a better solution foreach (')tem i

m there is an item i with higher

value than a chosen item j, Vi &by Wi {value}

but x;<w;, ;>0 and v;<v; W0 {total weight}
« If we substitute some i with i while w</ W11

we get a better solution remove item 1 w/ highest v;

X; <= min{w; , W - w}

= How much of i: min{w;-x;, x;} Wew +min{w . W-w}
1!

= Thus, there is no better
solution than the greedy one

© 2004 Goodrich, Tamassia Greedy Method and Compression 11

Task Scheduling
(not in book)

Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f; (where s; < f)

Goal: Perform all the tasks using a minimum number of

N

\\ - 144
machines.
Machine 3 [O I] |
Machine2 | |
Machine 1 |] T e e

© 2004 Goodrich, Tamassia Greedy Method and Compression 12

Task Scheduling Algorithm

Greedy choice: consider tasks
by their start time and use as

N

few machines as possible with Algorithm taskSchedule(T)

this Orde'_" Input: set T of tasks w/ start time s;
= Run time: O(n log n). Why? and finish time f

Correctness: Suppose there is a Output: non-conflicting schedule

better schedule. with minimum number of machines
= We can use k-1 machines m«0 {no. of machines}
= The algorithm uses k while T is not empty
= Let i be first task scheduled remove task | wi smallest s,
on machine k if there’s a machine j for i then
= Task i must conflict with k-1 schedule 1 on machine J
other tasks else
= But that means there is no memtl |
non-conflicting schedule schedule 1 on machine I

using k-1 machines
© 2004 Goodrich, Tamassia Greedy Method and Compression 13

Example

Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f; (where s; < f)
s [1,4],[1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
Goal: Perform all tasks on min. number of machines

N

Machine 3]])
Machine2 | .)
Machine 1 | | I S R

© 2004 Goodrich, Tamassia Greedy Method and Compression 14

Preprocessing Strings

Preprocessing the pattern speeds up pattern matching
gueries
= After preprocessing the pattern, KMP’s algorithm performs
pattern matching in time proportional to the text size
If the text is large, immutable and searched for often
(e.g., works by Shakespeare), we may want to
preprocess the text instead of the pattern

A trie is a compact data structure for representing a
set of strings, such as all the words in a text

= A trie supports pattern matching queries in time proportional
to the pattern size

N

© 2004 Goodrich, Tamassia Tries 15

Standard Tries

@ The standard trie for a set of strings S is an ordered tree such that:
= Each node but the root is labeled with a character
= The children of a node are alphabetically ordered
= The paths from the external nodes to the root yield the strings of S
#® Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

N

© 2004 Goodrich, Tamassia Tries 16

Analysis of Standard Tries

L/

A standard trie uses O(n) space and supports
searches, insertions and deletions in time O(dm),
where:

n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet

N

© 2004 Goodrich, Tamassia Tries 17

Word Matching with a Trie

p
@ insertthewords [s[el el [al | bl elal r] 2 |s|e Il s| t| of c| k| !
tgf_thetextinto 0123456 7 8 9 1011121314 15 16 17 18 19 20 21 22 23
@Erzl:lechleafis S| el e a bl ul 1] I]? bl u y s| t| o] c| k| !
associated w/ one 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
particular word bl i| d s| t| o] c| k| ! bl i| d s| t| o] c| k| !
leaf stores indices 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
wgséebZZ?gglated hlelalr| |tfhle |[blel I]I1]?2 |s|t]|olp|!
(“see” starts at 69 70 7172 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 8
index 0 & 24, leaf

for “see” stores

those indices)
b C@ S
e | C@ € t
I d | y C@ e I 0
47,58 36 0, 24
r | | r | C P
6 78 30 69 12 84

| | . 17, 40, 18
© 2004 Goodrich, Tamassia Tries 51, 62

N

A compressed trie has
internal nodes of degree at
least two

It is obtained from standard
trie by compressing chains of
“redundant” nodes

ex. the “i”" and “d” in “bid”
are “redundant” because
they signify thbe sa ord

© 2004 Goodrich, Tamassia

Compressed Tries

ar

Tries

ck

19

Suffix Trie

#® The suffix trie of a string X is the compressed trie of all the
suffixes of X

N

m
0

NS

m
A

|
3
Q

O [N

~ | D

nimize

mize nimize

yAS

nimize

e

© 2004 Goodrich, Tamassia

Tries

e

20

Analysis of Suffix Tries

T 4@ Compact representation of the suffix trie for a string
X of size n from an alphabet of size d
s Uses O(n) space

= Supports arbitrary pattern matching queries in X in O(dm)
time, where m is the size of the pattern

= Can be constructed in O(n) time

mj i
01

m
4

O | N
~ | D

nii
2 3

4,7 2,7 6, 7 2,7 6, 7

© 2004 Goodrich, Tamassia Tries 21

