Section 12.2
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Matrix Chain-Products
(not in book)

K Dynamic Programming is a general
algorithm design paradigm.

N

= Rather than give the general structure, let us f
first give a motivating example: N
= Matrix Chain-Products B
# Review: Matrix Multiplication.
m C=A"B
. . e
m AisdxeandBise x f
e—1
Cli, j1=>_ Ali,k]*BIK, j] e k
k=0 ' N\
_ A C
= O(def) time d i
f
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Matrix Chain-Products

" Matrix Chain-Product:
s Compute A=A *A*...*A 4
H Ai IS di X di+1
= Problem: How to parenthesize?
# Example
m Bis3 x 100
m Cis100 x 5
m Disb x5
s (B*C)*D takes 1500 + 75 = 1575 ops
s B*(C*D) takes 1500 + 2500 = 4000 ops

N
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An Enumeration Approach

" Matrix Chain-Product Alg.:

= Try all possible ways to parenthesize
A=A * A ¥ *A

= Calculate number of ops for each one

= Pick the one that is best

# Running time:

= The number of parenthesizations is equal
to the number of binary trees with n nodes

= This is exponential!

s It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!

N

24
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N2
A Greedy Approach t’%

# Idea #1: repeatedly select the product that
uses (up) the most operations.

# Counter-example:
= Ais10 x 5
m Bis5 x 10
m Cis1l0x5
= Dis5 x 10

= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

s A¥((B*C)*D) takes 500+250+250 = 1000 ops

N
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;

Another Greedy Approach O

# Idea #2: repeatedly select the product that uses
the fewest operations.

# Counter-example:
= Ais 101 x 11
m Bisll x9
= Cis9 x 100

= Dis 100 x 99

Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

a (A*B)*(C*D) takes 9999+89991+89100=189090 ops

# The greedy approach is not giving us the optimal
value.

N
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A "Recursive” Approach

# Define subproblems:
= Find the best parenthesization of A*A;,;*...*A.,.

= Let N;; denote the number of operations done by this
subproblem

= The optimal solution for the whole problem is N , ;.

# Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
= There has to be a final multiplication (root of the expression
tree) for the optimal solution.
m Say, the final multiply is at index i: (Ag*...*A)*(A 1 *...*A.1).
= Then the optimal solution N, . ; is the sum of two optimal
subproblems, Ny; and N;,; 4 plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.
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A Characterizing
Equation

# The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

# Let us consider all possible places for that final multiply:

= Recall that A, is a d; x d,,; matrix.
= 50, a characterizing equation for N;; is the following:

N

Ni T .n?(in{Ni K T Nk+1j +didk+1dj+1}
’ I<K< | ’ ’

# Note that subproblems are not independent--the
subproblems overlap.
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A Dynamic Programming

N

A4

A4

Algorithm

Since subproblems
overlap, we don't
use recursion.

Instead, we
construct optimal
subproblems
“bottom-up.”

N, s are easy, so
start with them
Then do length
2,3,... subproblems,
and so on.

The running time is

O(n3)
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Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
parenthisization of S

for i« 1ton-1do
Nii <0
forb« 1ton-1do
for 1 <« 0ton-b-1do
<« 1+b
N;; < +infinity
fork < itoj-1do
N;; <= min{N

ii 0 Nik *Nyyqj +didysp digg
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A Dynamic Programming

g

Algorithm Visualization 6
& _ . &
& The bottom-up Nl,j EI](II}{NW + Nk+l,j + dldk+ldj+l} L awer

construction fillsinthe N|o 1 2 j oo Dl

N array by diagonals 0 . —
® N, ; gets values from 1

previous entries in i-th

row and j-th column | L]

# Filling in each entry in
the N table takes O(n)
time.

# Total run time: O(n3)

# Getting actual n-1
parenthesization can be
done by remembering
“k” for each N entry
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The General Dynamic
Programming Technique

# Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

N
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Subsequences

®A subsequence of a character string
XoX1X5... X1 1S @ string of the form
X X:,...X;,, Where ij < ij+1.

# Not the same as substring!

#®Example String: ABCDEFGHIJK
» Subsequence: ACEGIIJK
= Subsequence: DFGHK
= Not subsequence: DAGH

N
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The Longest Common
Subsequence (LCS) Problem

# Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

#Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

#® Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence
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A Poor Approach to the
LCS Problem

# A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

#® Analysis:

s If X is of length n, then it has 2"
subseqguences

= This is an exponential-time algorithm!

N
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A Dynamic-Programming
Approach to the LCS Problem

p
T @ Define L[i,j] to be the length of the longest common
subsequence of X[O0..i] and Y[O0..j].

# Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate
that the null part of X or Y has no match with the other.
# Then we can define L[i,j] in the general case as follows:
1. If x,=y; then L[ij] = L[i-1,j-1] + 1 (we can add this match)
2. If x;# y;, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
0123456789 1011 012345678910
Y=CGATAATTGAGA Y=CGATAATTGAG L[9.9]=6
A N\\V4 S| zis10s
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789
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An LCS Algorithm

Algorithm LCS(X,Y ):

Input: Strings X and Y with n and m elements, respectively

Output: Fori =0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
that is a subsequence of both the string X[0..i] = XgX;X5...X; and the
string Y [0.. j] = YoY1Y2--Y;

fori =1ton-1do

N

L[i,-1]=0
forj =0 to m-1 do
L[-1]1 =0

fori =0ton-1do
forj =0 to m-1 do
if x, = y; then
L[i, j] = L[i-1, j-1] + 1
else
L[II J] = maX{L[I'l, J] / L[Il J_l]}
return array L
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Visualizing the LCS Algorithm
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Analysis of LCS Algorithm

#\We have two nested loops
s [he outer one iterates n times
a [he inner one iterates m times

a A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(nm)
# Answer is contained in L[n,m] (and the

subsequence can be recovered from the
L table).

N
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