Section 12.2

© 2004 Goodrich, Tamassia Dynamic Programming 1

Matrix Chain-Products
(not in book)

K Dynamic Programming is a general
algorithm design paradigm.

N

= Rather than give the general structure, let us f
first give a motivating example: N
= Matrix Chain-Products B
Review: Matrix Multiplication.
m C=A"B
. . e
m AisdxeandBise x f
e—1
Cli, j1=>_ Ali,k]*BIK, j] e k
k=0 ' N\
_ A C
= O(def) time d i
f

© 2004 Goodrich, Tamassia Dynamic Programming

Matrix Chain-Products

" Matrix Chain-Product:
s Compute A=A *A*...*A 4
H Ai IS di X di+1
= Problem: How to parenthesize?
Example
m Bis3 x 100
m Cis100 x 5
m Disb x5
s (B*C)*D takes 1500 + 75 = 1575 ops
s B*(C*D) takes 1500 + 2500 = 4000 ops

N

© 2004 Goodrich, Tamassia Dynamic Programming 3

An Enumeration Approach

" Matrix Chain-Product Alg.:

= Try all possible ways to parenthesize
A=A * A ¥ *A

= Calculate number of ops for each one

= Pick the one that is best

Running time:

= The number of parenthesizations is equal
to the number of binary trees with n nodes

= This is exponential!

s It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!

N

24

© 2004 Goodrich, Tamassia Dynamic Programming

N2
A Greedy Approach t’%

Idea #1: repeatedly select the product that
uses (up) the most operations.

Counter-example:
= Ais10 x 5
m Bis5 x 10
m Cis1l0x5
= Dis5 x 10

= Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops

s A¥((B*C)*D) takes 500+250+250 = 1000 ops

N

© 2004 Goodrich, Tamassia Dynamic Programming 5

;

Another Greedy Approach O

Idea #2: repeatedly select the product that uses
the fewest operations.

Counter-example:
= Ais 101 x 11
m Bisll x9
= Cis9 x 100

= Dis 100 x 99

Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops

a (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal
value.

N

© 2004 Goodrich, Tamassia Dynamic Programming 6

A "Recursive” Approach

Define subproblems:
= Find the best parenthesization of A*A;,;*...*A.,.

= Let N;; denote the number of operations done by this
subproblem

= The optimal solution for the whole problem is N , ;.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
= There has to be a final multiplication (root of the expression
tree) for the optimal solution.
m Say, the final multiply is at index i: (Ag*...*A)*(A 1 *...*A.1).
= Then the optimal solution N, . ; is the sum of two optimal
subproblems, Ny; and N;,; 4 plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

© 2004 Goodrich, Tamassia Dynamic Programming 7

N
\J

A Characterizing
Equation

The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

Let us consider all possible places for that final multiply:

= Recall that A, is a d; x d,,; matrix.
= 50, a characterizing equation for N;; is the following:

N

Ni T .n?(in{Ni K T Nk+1j +didk+1dj+1}
’ I<K< | ’ ’

Note that subproblems are not independent--the
subproblems overlap.

© 2004 Goodrich, Tamassia Dynamic Programming 8

A Dynamic Programming

N

A4

A4

Algorithm

Since subproblems
overlap, we don't
use recursion.

Instead, we
construct optimal
subproblems
“bottom-up.”

N, s are easy, so
start with them
Then do length
2,3,... subproblems,
and so on.

The running time is

O(n3)

© 2004 Goodrich, Tamassia

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal
parenthisization of S

for i« 1ton-1do
Nii <0
forb« 1ton-1do
for 1 <« 0ton-b-1do
<« 1+b
N;; < +infinity
fork < itoj-1do
N;; <= min{N

ii 0 Nik *Nyyqj +didysp digg

Dynamic Programming 9

A Dynamic Programming

g

Algorithm Visualization 6
& _ . &
& The bottom-up Nl,j EI](II}{NW + Nk+l,j + dldk+ldj+l} L awer

construction fillsinthe N|o 1 2 j oo Dl

N array by diagonals 0 . —
® N, ; gets values from 1

previous entries in i-th

row and j-th column | L]

Filling in each entry in
the N table takes O(n)
time.

Total run time: O(n3)

Getting actual n-1
parenthesization can be
done by remembering
“k” for each N entry

© 2004 Goodrich, Tamassia Dynamic Programming 10

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

N

© 2004 Goodrich, Tamassia Dynamic Programming 11

Subsequences

®A subsequence of a character string
XoX1X5... X1 1S @ string of the form
X X:,...X;,, Where ij < ij+1.

Not the same as substring!

#®Example String: ABCDEFGHIJK
» Subsequence: ACEGIIJK
= Subsequence: DFGHK
= Not subsequence: DAGH

N

© 2004 Goodrich, Tamassia Dynamic Programming

12

The Longest Common
Subsequence (LCS) Problem

Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

#Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

#® Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

© 2004 Goodrich, Tamassia Dynamic Programming 13

A Poor Approach to the
LCS Problem

A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

#® Analysis:

s If X is of length n, then it has 2"
subseqguences

= This is an exponential-time algorithm!

N

© 2004 Goodrich, Tamassia Dynamic Programming 14

A Dynamic-Programming
Approach to the LCS Problem

p
T @ Define L[i,j] to be the length of the longest common
subsequence of X[O0..i] and Y[O0..j].

Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate
that the null part of X or Y has no match with the other.
Then we can define L[i,j] in the general case as follows:
1. If x,=y; then L[ij] = L[i-1,j-1] + 1 (we can add this match)
2. If x;# y;, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
0123456789 1011 012345678910
Y=CGATAATTGAGA Y=CGATAATTGAG L[9.9]=6
A N\\V4 S| zis10s
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789

© 2004 Goodrich, Tamassia Dynamic Programming 15

An LCS Algorithm

Algorithm LCS(X,Y):

Input: Strings X and Y with n and m elements, respectively

Output: Fori =0,...,n-1, j = 0,...,m-1, the length L[i, j] of a longest string
that is a subsequence of both the string X[0..i] = XgX;X5...X; and the
string Y [0.. j] = YoY1Y2--Y;

fori =1ton-1do

N

L[i,-1]=0
forj =0 to m-1 do
L[-1]1 =0

fori =0ton-1do
forj =0 to m-1 do
if x, = y; then
L[i, j] = L[i-1, j-1] + 1
else
L[II J] = maX{L[I'l, J] / L[Il J_l]}
return array L

© 2004 Goodrich, Tamassia Dynamic Programming 16

Visualizing the LCS Algorithm

\V

11

0

2

01234567891011

Y=

X

GTTCCTAATA

0123456789

3
4
5
6
6

6

10

3
3

5
5
5

3
3

3
3

3
3

EH

212121212 (2]|2]| 2

2122

212

21212|13(3[3]3

2212|3444/ 4

21314156789

1
1
1
1
1

202333445
202344445

23|34 (5[8158

2131414 [5|5]5|16]6

|

|
|
|
1
|
1
|
1
|

0

0
0

1
1
1
1
1
1
1

-1

010[{010{0]|0]O|0O[O]0O]|O]O

0

0
0
0
0

L

-1

/

17

Dynamic Programming

© 2004 Goodrich, Tamassia

Analysis of LCS Algorithm

#\We have two nested loops
s [he outer one iterates n times
a [he inner one iterates m times

a A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(nm)
Answer is contained in L[n,m] (and the

subsequence can be recovered from the
L table).

N

© 2004 Goodrich, Tamassia Dynamic Programming 18

