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Dynamic Programming

Section 12.2
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Matrix Chain-Products 
(not in book)

Dynamic Programming is a general 
algorithm design paradigm.
◼ Rather than give the general structure, let us 

first give a motivating example:

◼ Matrix Chain-Products

Review: Matrix Multiplication.
◼ C = A*B

◼ A is d × e and B is e × f

◼ O(def ) time
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Matrix Chain-Products
Matrix Chain-Product:
◼ Compute A=A0*A1*…*An-1

◼ Ai is di × di+1

◼ Problem: How to parenthesize?

Example
◼ B is 3 × 100

◼ C is 100 × 5

◼ D is 5 × 5

◼ (B*C)*D takes 1500 + 75 = 1575 ops

◼ B*(C*D) takes 1500 + 2500 = 4000 ops



© 2004 Goodrich, Tamassia Dynamic Programming 4

An Enumeration Approach
Matrix Chain-Product Alg.:
◼ Try all possible ways to parenthesize 

A=A0*A1*…*An-1

◼ Calculate number of ops for each one

◼ Pick the one that is best

Running time:
◼ The number of parenthesizations is equal 

to the number of binary trees with n nodes

◼ This is exponential!

◼ It is called the Catalan number, and it is 
almost 4n.

◼ This is a terrible algorithm!
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A Greedy Approach

Idea #1: repeatedly select the product that 
uses (up) the most operations.

Counter-example: 
◼ A is 10 × 5

◼ B is 5 × 10

◼ C is 10 × 5

◼ D is 5 × 10

◼ Greedy idea #1 gives (A*B)*(C*D), which takes 
500+1000+500 = 2000 ops

◼ A*((B*C)*D) takes 500+250+250 = 1000 ops
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Another Greedy Approach
Idea #2: repeatedly select the product that uses 
the fewest operations.

Counter-example: 
◼ A is 101 × 11

◼ B is 11 × 9

◼ C is 9 × 100

◼ D is 100 × 99

◼ Greedy idea #2 gives A*((B*C)*D)), which takes 
109989+9900+108900=228789 ops

◼ (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal 
value.
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A “Recursive” Approach
Define subproblems:
◼ Find the best parenthesization of Ai*Ai+1*…*Aj.

◼ Let Ni,j denote the number of operations done by this 
subproblem.

◼ The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems
◼ There has to be a final multiplication (root of the expression 

tree) for the optimal solution.  

◼ Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).

◼ Then the optimal solution N0,n-1 is the sum of two optimal 
subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.

◼ If the global optimum did not have these optimal 
subproblems, we could define an even better “optimal” 
solution.
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A Characterizing 
Equation

The global optimal has to be defined in terms of 
optimal subproblems, depending on where the final 
multiply is at.

Let us consider all possible places for that final multiply:
◼ Recall that Ai is a di × di+1 matrix.

◼ So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent--the 
subproblems overlap.
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A Dynamic Programming 
Algorithm

Since subproblems 
overlap, we don’t 
use recursion.

Instead, we 
construct optimal 
subproblems 
“bottom-up.” 

Ni,i’s are easy, so 
start with them

Then do length 
2,3,… subproblems, 
and so on.

The running time is 
O(n3)

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal 
parenthisization of S

for i  1 to n-1 do

Ni,i  0

for b  1 to n-1 do

for i  0 to n-b-1 do

j  i+b

Ni,j  +infinity

for k  i to j-1 do

Ni,j  min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}
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A Dynamic Programming 
Algorithm Visualization

The bottom-up 
construction fills in the 
N array by diagonals

Ni,j gets values from 
previous entries in i-th 
row and j-th column 

Filling in each entry in 
the N table takes O(n) 
time.

Total run time: O(n3)

Getting actual 
parenthesization can be 
done by remembering 
“k” for each N entry

}{min 11,1,, +++


++= jkijkki
jki

ji dddNNN



© 2004 Goodrich, Tamassia Dynamic Programming 11

The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:
◼ Simple subproblems: the subproblems can be 

defined in terms of a few variables, such as j, k, l, 
m, and so on.

◼ Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems

◼ Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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Subsequences

A subsequence of a character string 
x0x1x2…xn-1 is a string of the form 
xi1xi2…xik, where ij < ij+1.

Not the same as substring!

Example String: ABCDEFGHIJK

◼ Subsequence: ACEGIJK

◼ Subsequence: DFGHK

◼ Not subsequence: DAGH
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The Longest Common 
Subsequence (LCS) Problem

Given two strings X and Y, the longest 
common subsequence (LCS) problem is 
to find a longest subsequence common 
to both X and Y

Has applications to DNA similarity 
testing (alphabet is {A,C,G,T})

Example: ABCDEFG and XZACKDFWGH 
have ACDFG as a longest common 
subsequence
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A Poor Approach to the 
LCS Problem

A Brute-force solution: 

◼ Enumerate all subsequences of X

◼ Test which ones are also subsequences of Y

◼ Pick the longest one.

Analysis:

◼ If X is of length n, then it has 2n

subsequences

◼ This is an exponential-time algorithm!
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A Dynamic-Programming 
Approach to the LCS Problem

Define L[i,j] to be the length of the longest common 
subsequence of X[0..i] and Y[0..j].

Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate 
that the null part of X or Y has no match with the other.

Then we can define L[i,j] in the general case as follows:

1. If xi = yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)

2. If xi ≠ yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no 
match here)

Case 1: Case 2:
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An LCS Algorithm
Algorithm LCS(X,Y ):

Input: Strings X and Y with n and m elements, respectively

Output: For i = 0,…,n-1, j = 0,...,m-1, the length L[i, j] of a longest string 
that is a subsequence of both the string X[0..i] = x0x1x2…xi  and the 
string Y [0.. j] = y0y1y2…yj

for i =1 to n-1 do

L[i,-1] = 0

for j =0 to m-1 do

L[-1,j] = 0

for i =0 to n-1 do

for j =0 to m-1 do

if xi = yj then

L[i, j] = L[i-1, j-1] + 1

else

L[i, j] = max{L[i-1, j] , L[i, j-1]}

return array L
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Visualizing the LCS Algorithm
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Analysis of LCS Algorithm

We have two nested loops
◼ The outer one iterates n times

◼ The inner one iterates m times

◼ A constant amount of work is done inside 
each iteration of the inner loop

◼ Thus, the total running time is O(nm)

Answer is contained in L[n,m] (and the 
subsequence can be recovered from the 
L table).


