Selection

Section 11.5

The Median Problem

Given n elements x₁, x₂, ..., x_n, taken from a total order, find the median of this set.

Of course, we can sort the set in O(n log n) time and then index the (n/2)-th element.

Can we solve this problem faster?
It's easier if we generalize the problem!

The Selection Problem

Given an integer k and n elements x₁, x₂, ..., x_n, taken from a total order, find the k-th smallest element in this set.

Again, we can sort the set in O(n log n) time and then index the k-th element.

$$k=2 \quad \begin{array}{c} 7 \ 4 \ 9 \ 6 \ 2 \ \rightarrow \ 2 \ \underline{4} \ 6 \ 7 \ 9 \end{array}$$

Adding k to the problem gives us flexibility when doing recursion.

Quick-Select

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - Prune: pick a random element x
 (called pivot) and partition S into
 - L: elements less than x
 - E: elements equal x
 - G: elements greater than x
 - Search: depending on k, either answer is in E, or we need to recur in either L or G

 $k \leq |L|$

 $|L| < k \leq |L| + |E|$

(done)

k > |L| + |E|k' = k - |L| - |E|

Partition

- We partition an input sequence as in the quick-sort algorithm:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-select takes O(n) time

Algorithm *partition*(*S*, *p*)

Input sequence *S*, position *p* of pivot Output subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp. *L*, *E*, *G* \leftarrow empty sequences $x \leftarrow S.erase(p)$ while ¬*S.empty*() $y \leftarrow S.eraseFront()$ if y < x*L.insertBack*(y) else if y = x*E.insertBack*(y) else { y > x } G.insertBack(y) return L, E, G

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
 - Each node represents a recursive call of quick-select, and stores k and the remaining sequence

© 2004 Goodrich, Tamassia

Selection

Expected Running Time, Part 2

- Probabilistic Fact #1: The expected number of coin tosses required in order to get one head is two
- Probabilistic Fact #2: Expectation is a linear function:
 - E(X + Y) = E(X) + E(Y)
 - E(cX) = cE(X)
- Let T(n) denote the expected running time of quick-select.
- By Fact #2,
 - $T(n) \le T(3n/4) + bn *$ (expected # of calls before a good call)
- By Fact #1,
 - $T(n) \le T(3n/4) + 2bn$
- That is, by plug-and-chug, T(n) is a geometric series:
 - $T(n) \le 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + \dots$
- So T(n) is O(n).

We can solve the selection problem in O(n) expected time.

© 2004 Goodrich, Tamassia

Deterministic Selection

- We can do selection in O(n) worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into n/5 sets of 5 each
 - Find a median in each set
 - Recursively find the median of the "baby" medians.

Min size	1	1	1	1	1	1	1	1	1	1	1	
for L	2	2	2	2	2	2	2	2	2	2	2	
	3	3	3	3	3	3	3	3	3	3	3	Min size
	4	4	4	4	4	4	4	4	4	4	4	
	5	5	5	5	5	5	5	5	5	5	5	E 10F G

We want to select the k-th element of a set S.

If S is small (say, less than 40 elements), sort it and choose the kth element in the sorted order.

Otherwise:

• Divide S into $\left\lfloor \frac{n}{5} \right\rfloor$ sets of at most 5 elements each.

This can be done in linear time.

Find the median of each set, by sorting each set.

1.1		1		1		1		1			1.1		1	1.1		1		1.1	
4		5		27		7		29		10	14		22	6		17		35	
19		31		54	~~~	35		38	~~~	26	 35	~~~~	24	 32	~~~~	43		41	
 37	~~~	55		55	~~~	49		41	~~~	42	 47	~~~~	70	 44	~~~~	56		58	
 41		62		63		64		66		52	 59		83	 64		61			
 80		69		81		82		83		56	 88		92	 91		75			
 		1	1.4			1.1	1.4			1			1.1			1	a 7		

We'll call these medians the representative of their respective sets.

Sorting up to five elements takes O(1) time, so in total this step is $\left[\frac{n}{5}\right] * O(1) = O(n)$ time.

Recursively find the median m of the representatives.

Since there are $\left\lfloor \frac{n}{5} \right\rfloor$ representatives, this takes time T($\left\lfloor \frac{n}{5} \right\rfloor$).

Partition the entire set S into sets L, E, and G, using m as the pivot. This takes linear time.

Then:

- If k ≤ |L|, recurse to find the k-th element of L
- If |L| < k ≤ |L|+|E|, m is the k-th element, and we are done.
- If |L| + |E| < k, recurse to find the (k - |L| - |E|)-th element of G.

G

k > |L| + |E|k' = k - |L| - |E|

m

E

 $|L| < k \leq |L| + |E|$

(done)

 $k \leq |L|$

The recursion takes time T(|L|) or T(|G|).
But we can bound |L| and |G|:

♦ The > $\frac{n}{4}$ elements highlighted here must all be less than or equal to m. In the partition, these go into L or E. Thus |G| ≤ $\frac{3n}{4}$.

♦ By a similar argument, $|L| \leq \frac{3n}{4}$.

So the final recursion step takes time at most $T(\frac{3n}{4})$. Adding up the work, we get:

 $\begin{cases} b & n < 40 \\ T(n) \le T(\lceil n/5 \rceil) + T(3n/4) + bn & otherwise \end{cases}$

This is a cool recurrence. We'll solve it by the guess-and-verify method. I'm going to guess that $T(n) \le cn$. My induction hypothesis is that that is true for $n' \le n$. The basis implies that my c must be at least b.

By the induction hypothesis,

 $T(n) \le c \lceil n/5 \rceil + c(3n/4) + bn$

Since $\lceil n/5 \rceil < (n/5) + 1$, we have
T(n) ≤ c(n/5) + c + c(3n/4) + bn

 $T(n) \le c(4n/20) + c(15n/20) + c + bn$

= c(19n/20) + c + bn

 $\leq c(19n/20) + (n/40)c + bn$

= c(39n/40) + bn

 \leq cn, provided b \leq (1/40)c, or c \geq 40b.

Since we can choose our c to be equal to 40b, we have just shown that $T(n) \leq cn$, by induction.

Thus, selection can be done deterministically in linear time.

or

