
© 2004 Goodrich, Tamassia Selection 1

Selection

Section 11.5

© 2004 Goodrich, Tamassia Selection 2

The Median Problem

Given n elements x1, x2, …, xn, taken from a
total order, find the median of this set.

Of course, we can sort the set in O(n log n) time
and then index the (n/2)-th element.

Can we solve this problem faster?

It’s easier if we generalize the problem!

7 4 9 6 2 → 2 4 6 7 9

© 2004 Goodrich, Tamassia Selection 3

The Selection Problem

Given an integer k and n elements x1, x2, …, xn,
taken from a total order, find the k-th smallest
element in this set.

Again, we can sort the set in O(n log n) time
and then index the k-th element.

Adding k to the problem gives us flexibility when
doing recursion.

7 4 9 6 2 → 2 4 6 7 9k=2

© 2004 Goodrich, Tamassia Selection 4

Quick-Select
Quick-select is a randomized
selection algorithm based on
the prune-and-search
paradigm:
◼ Prune: pick a random element x

(called pivot) and partition S into

 L: elements less than x

 E: elements equal x

 G: elements greater than x

◼ Search: depending on k, either
answer is in E, or we need to
recur in either L or G

x

k > |L|+|E|

k’ = k - |L| - |E|

x

L GE

k < |L|

|L| < k < |L|+|E|

(done)

© 2004 Goodrich, Tamassia Selection 5

Partition
We partition an input
sequence as in the quick-sort
algorithm:

◼ We remove, in turn, each
element y from S and

◼ We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the
end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-select takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G empty sequences

x S.erase(p)

while S.empty()

y S.eraseFront()

if y < x

L.insertBack(y)

else if y = x

E.insertBack(y)

else { y > x }

G.insertBack(y)

return L, E, G

© 2004 Goodrich, Tamassia Selection 6

Quick-Select Visualization
An execution of quick-select can be visualized by a
recursion path

◼ Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

k=5, S=(7 4 9 3 2 6 5 1 8)

5

k=2, S=(7 4 9 6 5 8)

k=2, S=(7 4 6 5)

k=1, S=(7 6 5)

© 2004 Goodrich, Tamassia Selection 7

Expected Running Time
Consider a recursive call of quick-select on a sequence of size s
◼ Good call: the sizes of L and G are each less than 3s/4

◼ Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2

◼ 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

© 2004 Goodrich, Tamassia Selection 8

Expected Running Time,
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

Probabilistic Fact #2: Expectation is a linear function:
◼ E(X + Y) = E(X) + E(Y)

◼ E(cX) = cE(X)

Let T(n) denote the expected running time of quick-select.

By Fact #2,

◼ T(n) < T(3n/4) + bn * (expected # of calls before a good call)

By Fact #1,

◼ T(n) < T(3n/4) + 2bn

That is, by plug-and-chug, T(n) is a geometric series:

◼ T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …

So T(n) is O(n).

We can solve the selection problem in O(n) expected
time.

© 2004 Goodrich, Tamassia Selection 9

Deterministic Selection
We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

◼ Divide S into n/5 sets of 5 each

◼ Find a median in each set

◼ Recursively find the median of the “baby” medians.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Min size
for L

Min size
for G

© 2019 Shermer

More slowly…

Selection 10

19

41

4

80

37

58

35

41

31

55

62

69

5

63

27

81

54

55

7

82

49

64

35

29

83

66

41

38

56

26

10

52

42

47

88

35

14

59

83

24

22

70

92

91

64

44

32

6

43

17

56

61

75

© 2019 Shermer

More slowly…

Selection 11

4

19

37

41

80

35

41

58

5

31

55

62

69

27

54

55

63

81

7

35

49

64

82

29

38

41

66

83

10

26

42

52

56

14

35

47

59

88

22

24

70

83

92

6

32

44

64

91

17

43

56

61

75

© 2019 Shermer

More slowly…

Selection 12

4

19

37

41

80

35

41

58

5

31

55

62

69

27

54

55

63

81

7

35

49

64

82

29

38

41

66

83

10

26

42

52

56

14

35

47

59

88

22

24

70

83

92

6

32

44

64

91

17

43

56

61

75

© 2019 Shermer

More slowly…

Partition the entire set S into
sets L, E, and G, using m as the
pivot. This takes linear time.

Then:

◼ If k ≤ |L|, recurse to find the
k-th element of L

◼ If |L| < k ≤ |L|+|E|, m is the
k-th element, and we are
done.

◼ If |L| + |E| < k, recurse to
find the (k - |L| - |E|)-th
element of G.

Selection 13

m

L GE

k < |L|

|L| < k < |L|+|E|

(done)

k > |L|+|E|

k’ = k - |L| - |E|

© 2019 Shermer

More slowly…

Selection 14

4

19

37

41

80

35

41

58

5

31

55

62

69

27

54

55

63

81

7

35

49

64

82

29

38

41

66

83

10

26

42

52

56

14

35

47

59

88

22

24

70

83

92

6

32

44

64

91

17

43

56

61

75

© 2019 Shermer

More slowly…

Selection 15

© 2019 Shermer

More slowly…

Since n/5 < (n/5) + 1, we have

T(n) ≤ c(n/5) + c + c(3n/4) + bn

or

T(n) ≤ c(4n/20) + c(15n/20) + c + bn

= c(19n/20) + c + bn

≤ c(19n/20) + (n/40)c + bn

= c(39n/40) + bn

≤ cn, provided b ≤ (1/40)c, or c ≥ 40b.

Since we can choose our c to be equal to 40b, we have just shown
that T(n) ≤ cn, by induction.

Thus, selection can be done deterministically in linear time.

Selection 16

