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Selection

Section 11.5
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The Median Problem

Given n elements x1, x2, …, xn, taken from a 
total order, find the median of this set.

Of course, we can sort the set in O(n log n) time 
and then index the (n/2)-th element.

Can we solve this problem faster?

It’s easier if we generalize the problem!

7  4  9  6  2  → 2  4  6 7  9
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The Selection Problem

Given an integer k and n elements x1, x2, …, xn, 
taken from a total order, find the k-th smallest 
element in this set.

Again, we can sort the set in O(n log n) time 
and then index the k-th element.

Adding k to the problem gives us flexibility when 
doing recursion.

7  4  9  6  2  → 2  4 6  7  9k=2
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Quick-Select
Quick-select is a randomized
selection algorithm based on 
the prune-and-search 
paradigm:
◼ Prune: pick a random element x

(called pivot) and partition S into 

 L: elements less than x

 E: elements equal x

 G: elements greater than x

◼ Search: depending on k, either 
answer is in E, or we need to 
recur in either L or G

x

k > |L|+|E|

k’ = k - |L| - |E|

x

L GE

k < |L|

|L| < k < |L|+|E|

(done)
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Partition
We partition an input 
sequence as in the quick-sort 
algorithm:

◼ We remove, in turn, each 
element y from S and 

◼ We insert y into L, E or G,

depending on the result of 
the comparison with the 
pivot x

Each insertion and removal is 
at the beginning or at the 
end of a sequence, and 
hence takes O(1) time

Thus, the partition step of 
quick-select takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot 

Output subsequences L, E, G of the 
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G  empty sequences

x  S.erase(p)

while S.empty()

y  S.eraseFront()

if y < x

L.insertBack(y)

else if y = x

E.insertBack(y)

else { y > x }

G.insertBack(y)

return L, E, G
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Quick-Select Visualization
An execution of quick-select can be visualized by a 
recursion path

◼ Each node represents a recursive call of quick-select, and 
stores k and the remaining sequence

k=5, S=(7  4  9  3 2  6  5  1  8)

5

k=2, S=(7  4  9  6  5  8)

k=2, S=(7  4 6  5)

k=1, S=(7  6  5)
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Expected Running Time
Consider a recursive call of quick-select on a sequence of size s
◼ Good call: the sizes of L and G are each less than 3s/4

◼ Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2

◼ 1/2 of the possible pivots cause good calls:

7  9  7 1  → 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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Expected Running Time, 
Part 2

Probabilistic Fact #1: The expected number of coin tosses required in 
order to get one head is two

Probabilistic Fact #2: Expectation is a linear function:
◼ E(X + Y ) = E(X ) + E(Y )

◼ E(cX ) = cE(X )

Let T(n) denote the expected running time of quick-select.

By Fact #2,

◼ T(n) < T(3n/4) + bn * (expected # of calls before a good call)

By Fact #1,

◼ T(n) < T(3n/4) + 2bn

That is, by plug-and-chug, T(n) is a geometric series:

◼ T(n) < 2bn + 2b(3/4)n + 2b(3/4)2n + 2b(3/4)3n + …

So T(n) is O(n).

We can solve the selection problem in O(n) expected 
time.
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Deterministic Selection 
We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a 
good pivot for quick-select:

◼ Divide S into n/5 sets of 5 each

◼ Find a median in each set

◼ Recursively find the median of the “baby” medians.
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More slowly…

Selection 10
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More slowly…

Partition the entire set S into 
sets L, E, and G, using m as the 
pivot.  This takes linear time.

Then:

◼ If k ≤ |L|, recurse to find the 
k-th element of L

◼ If |L| < k ≤ |L|+|E|, m is the 
k-th element, and we are 
done.

◼ If |L| + |E| < k, recurse to 
find the (k - |L| - |E|)-th
element of G.

Selection 13

m

L GE

k < |L|

|L| < k < |L|+|E|

(done)

k > |L|+|E|

k’ = k - |L| - |E|
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More slowly…

Since n/5 < (n/5) + 1, we have

T(n) ≤ c(n/5) + c + c(3n/4) + bn

or

T(n) ≤ c(4n/20) + c(15n/20) + c + bn

= c(19n/20) + c + bn

≤ c(19n/20) + (n/40)c + bn

= c(39n/40) + bn

≤ cn,    provided b ≤ (1/40)c, or c ≥ 40b.

Since we can choose our c to be equal to 40b, we have just shown 
that T(n) ≤ cn, by induction.

Thus, selection can be done deterministically in linear time.

Selection 16


