
© 2004 Goodrich, Tamassia Sets 1

Sets and Union-Find

Section 11.4

© 2004 Goodrich, Tamassia Sets 2

Storing a Set in a List

We can implement a set with a list

Elements are stored sorted according to some
canonical ordering

The space used is O(n)

List

Nodes storing set elements in order

Set elements

© 2004 Goodrich, Tamassia Sets 3

Generic Merging

Generalized merge
of two sorted lists
A and B

Template method
genericMerge

Auxiliary methods

◼ aIsLess

◼ bIsLess

◼ bothAreEqual

Runs in O(nA +nB)

time provided the
auxiliary methods
run in O(1) time

Algorithm genericMerge(A, B)

S  empty sequence

while A.empty()  B.empty()

a  A.front(); b  B.front()

if a < b

aIsLess(a, S); A.eraseFront()

else if b < a

bIsLess(b, S); B.eraseFront()

else { b = a }

bothAreEqual(a, b, S)

A.eraseFront(); B.eraseFront()

while A.empty()

aIsLess(a, S); A.eraseFront()

while B.empty()

bIsLess(b, S); B.eraseFront()

return S

© 2004 Goodrich, Tamassia Sets 4

Using Generic Merge
for Set Operations

Any of the set operations can be
implemented using a generic merge

For example:
◼ For intersection: only copy elements that

occur in both lists

◼ For union: copy every element from both
lists except for the duplicates

All methods run in linear time

© 2004 Goodrich, Tamassia Sets 5

Set Operations
We represent a set by the
sorted sequence of its
elements

By specializing the auxliliary
methods the generic merge
algorithm can be used to
perform basic set
operations:
◼ union

◼ intersection

◼ subtraction

The running time of an
operation on sets A and B
should be at most O(nA+ nB)

Set union:
◼ aIsLess(a, S)

S.insertBack(a)

◼ bIsLess(b, S)

S.insertBack(b)

◼ bothAreEqual(a, b, S)

S.insertBack(a)

Set intersection:
◼ aIsLess(a, S)

{ do nothing }

◼ bIsLess(b, S)

{ do nothing }

◼ bothAreEqual(a, b, S)

S. insertBack(a)

© 2004 Goodrich, Tamassia

Template Method

A superclass implements an
algorithm in a method using its
subclasses’s methods.
Subclasses specialize the steps
of the algorithm.

// E is set element type.

class Merger {

public:

Set genericMerge(Set A, Set B);

virtual void aIsLess(E a, Set S) = 0;

virtual void bIsLess(E b, Set S) = 0;

virtual void bothAreEqual(E a, E b, Set S) = 0;

}

class SetUnion: public Merger {

virtual void aIsLess(E a, Set S) {

S.insertBack(a);

}

virtual void bIsLess(E b, Set S) {

S.insertBack(b);

}

virtual void bothAreEqual(E a, E b, Set S) {

S.insertBack(a);

}

}

// class SetIntersection would be similar.

Sets 6

© 2004 Goodrich, Tamassia Union-Find 7

Union-Find Partition Structures

© 2004 Goodrich, Tamassia Union-Find 8

Partitions with Union-Find
Operations

makeSet(x): Create a singleton set containing
the element x and return the position storing x
in this set

union(A, B): Return the set A U B, destroying
the old A and B

find(p): Return the set containing the element
at position p

© 2004 Goodrich, Tamassia Union-Find 9

List-based Implementation

Each set is stored in a sequence represented
with a linked-list

Each node should store an object containing
the element and a reference to the set name

© 2004 Goodrich, Tamassia Union-Find 10

Analysis of List-based
Representation

When doing a union, always move
elements from the smaller set to the
larger set
◼ Each time an element is moved it goes to a

set of size at least double its old set

◼ Thus, an element can be moved at most
O(log n) times

Total time needed to do n unions and
finds is O(n log n).

© 2004 Goodrich, Tamassia Union-Find 11

Tree-based Implementation
Each element is stored in a node, which contains a
"parent" pointer
A node v whose parent pointer points back to v is
called a set name
Each set is a tree, rooted at a node with a self-
referencing parent pointer
For example: The sets “1”, “2”, and “5”:

1

74

2

63

5

108

12

119

© 2004 Goodrich, Tamassia Union-Find 12

Union-Find Operations

To do a union, simply
make the root of one tree
point to the root of the
other

To do a find, follow
parent pointers from the
starting node until
reaching a node whose
parent pointer refers back
to itself

2

63

5

108

12

11

9

2

63

5

108

12

11

9

© 2004 Goodrich, Tamassia Union-Find 13

Union-Find Heuristic 1
Union by size:

◼ When performing a union,
make the root of smaller tree
point to the root of the larger

Implies O(n log n) time for
performing n union-find
operations:

◼ Each time we follow a pointer,
we are going to a subtree of
size at least double the size of
the previous subtree

◼ Thus, we will follow at most
O(log n) pointers for any find.

2

63

5

108

12

11

9

© 2004 Goodrich, Tamassia Union-Find 14

Path compression:
◼ After performing a find, compress all the pointers on the path

just traversed so that they all point to the root

Implies O(n log* n) time for performing n union-find
operations:
◼ Proof is somewhat involved… (and not in the book)

Union-Find Heuristic 2

2

63

5

108

12

11

9

2

63

5

108

12

11

9

© 2004 Goodrich, Tamassia Union-Find 15

Proof of log* n Amortized Time

For each node v that is a root
◼ define n(v) to be the size of the subtree rooted at v

(including v)
◼ identify a set with the root of its associated tree.

We update the size field n(v) only when a set is
unioned into v. Thus, if v is not a root, then n(v) is
the largest the subtree rooted at v can be, which
occurs just before we union v into some other node
whose size is at least as large as v ’s.
For any node v, then, define the rank of v, which we
denote as r(v), as r(v) = ⌊log n(v)⌋.
Thus, n(v) ≥ 2r(v).
Also, since there are at most n nodes in the tree of v,
r(v) ≤ ⌊log n⌋, for each node v.

© 2004 Goodrich, Tamassia Union-Find 16

Proof of log* n Amortized Time (2)

For each node v with parent w:
◼ r(v) < r(w)

Claim: There are at most n/ 2s nodes of rank s.

Proof:
◼ Since r(v) < r(w), for any node v with parent w, ranks are

monotonically increasing as we follow parent pointers up
any tree.

◼ Thus, if r(v) = r(w) for two nodes v and w, then the nodes
counted in n(v) must be separate and distinct from the
nodes counted in n(w).

◼ If a node v is of rank s, then n(v) ≥ 2s.

◼ Therefore, since there are at most n nodes total, there can
be at most n/2s that are of rank s.

© 2004 Goodrich, Tamassia Union-Find 17

Proof of log* n Amortized Time (3)

Definition: Tower of two’s function:

◼ t(i) = 2t(i-1), t(0) = 1

Definition: log*(n)

◼ log*(n) = t-1(n), the number of successive logs needed to
take n to 1.

◼ log(log(log(16))) = 1, so log*(16) = 3.

◼ log(log(log(log(65536)))) = 1, so log*(65536) = 4.

Nodes v and u are in the same rank group g if

◼ g = log*(r(v)) = log*(r(u)):

Since the largest rank is log n, the largest rank group
is

◼ log*(log n) = (log* n) - 1

© 2004 Goodrich, Tamassia Union-Find 18

Proof of log* n Amortized Time (4)

Charge 1 cyber-dollar per pointer hop during
a find:

◼ If w is the root or if w is in a different rank group
than v, then charge the find operation one cyber-
dollar.

◼ Otherwise (w is not a root and v and w are in the
same rank group), charge the node v one cyber-
dollar.

Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.

v

w

© 2004 Goodrich, Tamassia Union-Find 19

Proof of log* n Amortized Time (5)
After we charge a node v then v will get a new
parent, which is a node higher up in v ’s tree.

The rank of v ’s new parent will be greater than the
rank of v ’s old parent w.

Thus, any node v can be charged at most the
number of different ranks that are in v ’s rank group.

If v is in rank group g > 0, then v can be charged at
most t(g)-t(g-1) times before v has a parent in a
higher rank group (and from that point on, v will
never be charged again). In other words, the total
number, C, of cyber-dollars that can ever be charged
to nodes can be bounded by


−

=

−−
1log*

1

))1()(()(
n

g

gtgtgnC

© 2004 Goodrich, Tamassia Union-Find 20

Proof of log* n Amortized Time (end)

Bounding n(g): Returning to C:

)(

2

2
2

2

1

2

2
)(

)1(

1)1(

1)1()(

0
1)1(

)(

1)1(

gt

n

n

n

n

n
gn

gt

gt

gtgt

s
sgt

gt

gts
s

=

=



=



−

+−

−−−

=
+−

+−=





nn

n

gt
gt

n

gtgt
gt

n
C

n

g

n

g

n

g

log*

)(
)(

))1()((
)(

1log*

1

1log*

1

1log*

1



=



−−







−

=

−

=

−

=

