
Object-oriented design 1

Object-Oriented Design

© 2019 Shermer,
Based on Goodrich,
Tamassia, Mount

Section 2.1

Object-oriented design 2

Object-Oriented Design

❑ A method of program

design in which the main

elements are objects.

❑ Supported by using an

object-oriented language

like C++ or java.

❑ An object is an instance of

a class, which specifies the

type of data members any

instance contains, as well

as member functions (also

called methods) that any

instance can execute.

❑ A class should present a concise and
consistent interface to the objects
that are instances of the class.

❑ Class interfaces should not go into
unnecessary detail about the inner
workings of their instances. This is
called information hiding.

© 2019 Shermer

Object-oriented design 3

Object-Oriented Design Goals

❑ Correctness

❑ Robustness

❑ Adaptability

❑ Portability

❑ Reusability

❑ Readability
❑ Security

❑ Parallelizability

© 2019 Shermer

Object-oriented design 4

Object-Oriented Design
Principles

❑ Abstraction

❑ Encapsulation (information hiding)

❑ Modularity

❑ Hierarchical Organization

© 2019 Shermer

Object-oriented design 5

Abstraction

❑ Abstraction is to distill a complicated system
down to fundamental parts and describe these
parts in simple, precise language.

❑ Describing an abstracted system involves naming
the fundamental parts and describing their
variation or functionality.

❑ Systems can have many different abstractions
derived from them. The usefulness of an
abstraction depends on the task at hand.

❑ Applying abstraction to the design of data
structures gives rise to abstract data types
(ADTs).

© 2019 Shermer

Object-oriented design 6

Abstract Data Types (ADTs)

❑ An ADT is a mathematical model that specifies the
general type of the data that is stored and the
operations that are permitted on the data (along with
the types of the parameters of the operations).

❑ An ADT specifies what each operation does, but not
how it does it.

❑ The functionality of an ADT is expressed in C++ as the
public interface of the class representing the ADT.

❑ A class is said to implement an interface if its functions
include all the functions declared in the interface, and
possibly more.

© 2019 Shermer

Object-oriented design 7

Encapsulation

❑ Encapsulation is the idea that different
components of a software system should not
reveal the internal details of their
implementations.

❑ Also called information hiding.

❑ Encapsulation aids programmers in
establishing program correctness and giving
freedom when implementing the details of a
subsystem.

© 2019 Shermer

Object-oriented design 8

Encapsulation Example .h file
class Point {

public:

static Point *makeCartesian(double x, double y);

static Point *makePolar(double r, double theta);

double getX();

double getY();

double getR();

double getTheta();

}

© 2019 Shermer

Object-oriented design 9

Modularity

❑ Modularity refers to organizing code so that
different components of a software system
are divided into separate functional units.

❑ For example, we could have a game with a
database component, a networking
component, a user-interface component, and
a game logic component. Each component is
kept separately in different modules.

❑ Modularity helps with software reusability.

© 2019 Shermer

Object-oriented design 10

Hierarchical Organization

❑ IS-A hierarchies.

© 2019 Shermer

Low-Rise
Apartment

High-rise
Apartment

Two-story
House

Rancher Skyscraper

Apartment House Commercial
Building

Building

Object-oriented design 11

Design Patterns

❑ A design pattern has a name and is a
template for a solution to a problem in a
context.

❑ They are “best practices” for algorithm or
software design.

❑ We will encounter algorithm design
patterns and software design patterns in
this course.

© 2019 Shermer

Object-oriented design 12

Algorithm Design Patterns

The book covers

❑ Recursion

❑ Amortization

❑ Divide-and-conquer

❑ Prune-and-search

❑ Brute force

❑ The greedy method

❑ Dynamic programming

But we will probably not see the whole list in class.

© 2019 Shermer

Object-oriented design 13

Software Design Patterns

The book covers

❑ Position

❑ Adapter

❑ Iterator

❑ Template method

❑ Composition

❑ Comparator

❑ Decorator

And we’ve already seen

❑ Factory method

© 2019 Shermer

