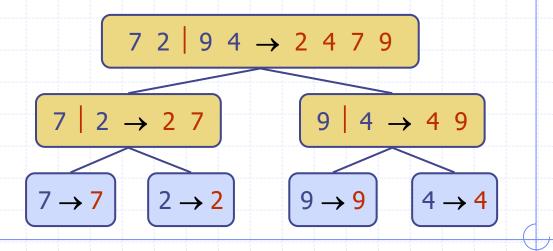
Divide-and-Conquer: Recurrence Equations



© 2004 Goodrich, Tamassia

Divide-and-Conquer

1

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S₁, S₂, ...
 - Recur: solve the subproblems recursively
 - Conquer: combine the solutions for $S_1, S_2, ...,$ into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

© 2004 Goodrich, Tamassia

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort
 S₁ and S₂
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm *mergeSort(S, C)*

Input sequence S with n
 elements, comparator C
Output sequence S sorted

according to C

if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ b_1n $mergeSort(S_1, C)$ T(n/2) $mergeSort(S_2, C)$ T(n/2) $S \leftarrow merge(S_1, S_2)$ b_2n

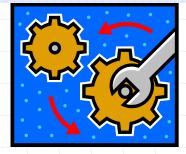
Recurrence Equation Analysis

The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
 Likewise, the basis case (n < 2) will take at b most steps.
 Therefore, if we let T(n) denote the running time of merge-sort:

$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$

We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 That is, a solution that has *T*(*n*) only on the left-hand side.

© 2004 Goodrich, Tamassia



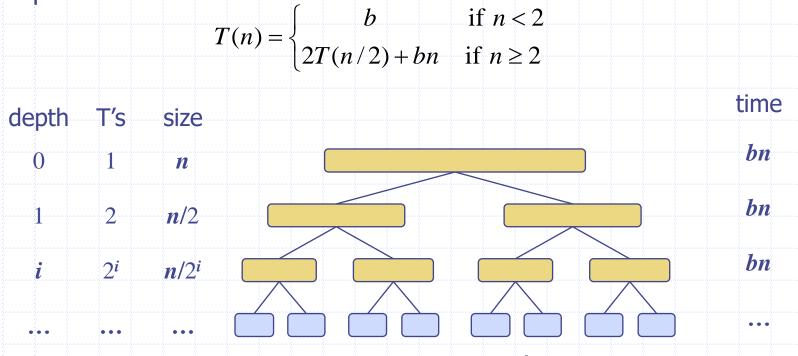
Iterative Substitution

In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn $= 2(2T(n/2^2) + b(n/2)) + bn$ $= 2^{2}T(n/2^{2}) + 2bn$ $= 2^{2}(2T(n/2^{3}) + b(n/2^{2})) + 2bn$ $= 2^{3}T(n/2^{3}) + 3bn$ $= 2^{4}T(n/2^{4}) + 4bn$ = $= 2^{i}T(n/2^{i}) + ibn$ Note that base, T(1)=b, case occurs when $2^i=n$. That is, $i = \log n$. $= 2^{\log n} T(1) + (\log n) bn$

♦ So, T(n) = bn + bn log n
♦ Thus, T(n) is O(n log n).

The Recursion Tree

Draw the recursion tree for the recurrence relation and look for a pattern:



Total time = $bn + bn \log n$

(last level plus all previous levels)

Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

 $T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$

♦ Guess: T(n) < cn log n.</p>

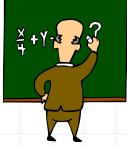
 $T(n) = 2T(n/2) + bn\log n$

 $= 2(c(n/2)\log(n/2)) + bn\log n$

 $= cn(\log n - \log 2) + bn\log n$

 $= cn \log n - cn + bn \log n$

Wrong: we cannot make this last line be less than cn log n



Guess-and-Test Method, (cont.)

Recall the recurrence equation: $T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$ Guess #2: $T(n) < cn \log^2 n$. $T(n) = 2T(n/2) + bn\log n$ $= 2(c(n/2)\log^2(n/2)) + bn\log n$ $= cn(\log n - \log 2)^2 + bn\log n$ $= cn \log^2 n - 2cn \log n + cn + bn \log n$ $\leq cn \log^2 n$ ■ if c > b. So, T(n) is O(n log² n). In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

© 2004 Goodrich, Tamassia

Master Method (Appendix)

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.



The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 4T(n/2) + n$$

Solution: $\log_{b}a=2$, so case 1 says T(n) is O(n²).

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

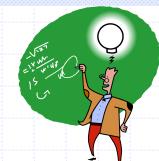
3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = 2T(n/2) + n\log n$

Solution: $\log_{b}a=1$, so case 2 says T(n) is O(n $\log^{2} n$).



The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

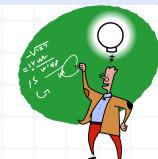
3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = T(n/3) + n\log n$

Solution: $\log_{b}a=0$, so case 3 says T(n) is O(n log n).



The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$T(n) = 8T(n/2) + n^2$

Solution: $log_b a=3$, so case 1 says T(n) is O(n³).

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

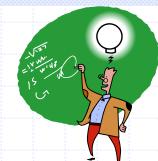
provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$. = (9/27) n³

Example:

$T(n) = 9T(n/3) + n^3$

Solution: $\log_{b}a=2$, so case 3 says T(n) is O(n³).

 $= (1/3) n^3$



The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

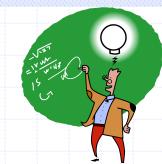
3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

T(n) = T(n/2) + 1 (binary search)

Solution: $\log_{b}a=0$, so case 2 says T(n) is O(log n).



The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

 $T(n) = 2T(n/2) + \log n$ (heap construction)

Solution: $log_b a=1$, so case 1 says T(n) is O(n).

Iterative "Proof" of the Master Theorem

• Using iterative substitution, let us see if we can find a pattern: T(n) = aT(n/b) + f(n)

 $= a(aT(n/b^{2})) + f(n/b)) + bn$

 $=a^{2}T(n/b^{2})+af(n/b)+f(n)$

 $= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$

$$= a^{\log_b n} T(1) + \sum_{i=0}^{(\log_b n) - 1} a^i f(n/b^i)$$

 $= n^{\log_b a} T(1) + \sum_{i=1}^{(\log_b n) - 1} a^i f(n/b^i)$

• We then distinguish the three $\overset{i=0}{c}$ as as

=...

- The first term is dominant
- Each term in the summation is the same
- The summation is a geometric series with decreasing terms

© 2004 Goodrich, Tamassia

9[°] x 1

Integer Multiplication

Algorithm: Multiply two n-bit integers I and J. Divide step: Split I and J into high-order and low-order bits $I = I_h 2^{n/2} + I_l$ $J = J_h 2^{n/2} + J_l$

We can then define I*J by multiplying the parts and adding:

$$I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$$

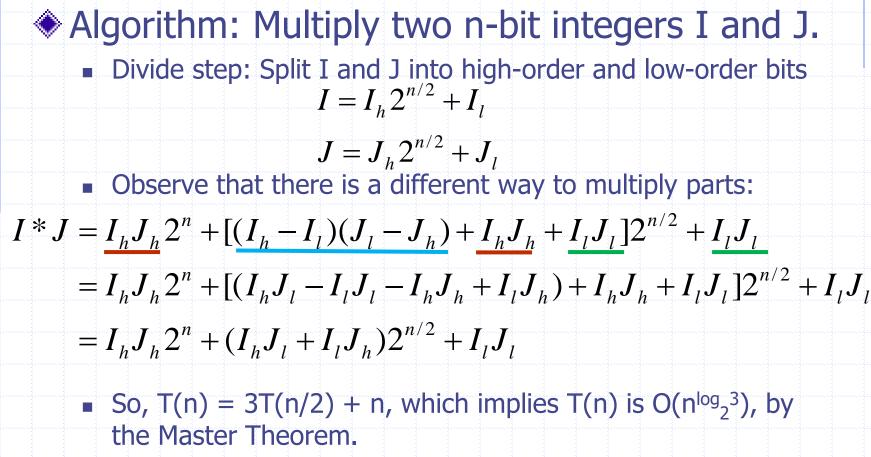
$$= I_{h}J_{h}2^{n} + I_{h}J_{l}2^{n/2} + I_{l}J_{h}2^{n/2} + I_{l}J_{h}$$

- So, T(n) = 4T(n/2) + n, which implies T(n) is $O(n^2)$.
- But that is no better than the algorithm we learned in grade school.

© 2004 Goodrich, Tamassia

An Improved Integer Multiplication Algorithm

9 <u>x 1</u>



Thus, T(n) is O(n^{1.585}).

© 2004 Goodrich, Tamassia