>Quick-Sort, Bucket Sort,
Radix Sort

Sections 11.2, 11.3.2, 11.3.3

| 74962524679 |

© 2004 Goodrich, Tamassia Quick-Sort

Quick-Sort

Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

= Divide: pick a random
element x (called pivot) and
partition S into

+ L elements less than x
» E elements equal x
* G elements greater than x

s Recur: sort L and G
= Conquer: join L, E and G

N

© 2004 Goodrich, Tamassia Quick-Sort

<<

M=

0=

Partition

We partition an input
sequence as follows:

= We remove, in turn, each
element y from S and

m WeinsertyintolL, Eor G,
depending on the result of
the comparison with the
pivot X

Each insertion and removal

N

]

L

Algorithm partition(S, p)
Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G « empty sequences
X «— S.erase(p)
while —S.empty()

y < S.eraseFront()

Ify <x
is at the beginning or at the g L .insertBack(y)
end of a sequence, and else ”}y =
hence takes O(1) time E.insertBack(y)
Thus, the partition step of else {y>x1}

quick-sort takes O(n) time G.insertBack(y)

return L, E, G

© 2004 Goodrich, Tamassia Quick-Sort 3

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
» Unsorted sequence before the execution and its pivot
+ Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962524679

N

(79579

N EEN
2-2)] [=9

© 2004 Goodrich, Tamassia Quick-Sort 4

(42 5 24|

Execution Example

N

@ Pivot selection

| 72943761]

© 2004 Goodrich, Tamassia Quick-Sort 5

Execution Example (cont.)

N

Partition, recursive call, pivot selection

(72943761]

© 2004 Goodrich, Tamassia Quick-Sort 6

Execution Example (cont.)

N

Partition, recursive call, base case

(72943761]

© 2004 Goodrich, Tamassia Quick-Sort 7

Execution Example (cont.)

N

#Recursive call, ..., base case, join

[72943761]

ls

-~ N
CErS T

-
| | 1
| | 1
/\ ————— L

© 2004 Goodrich, Tamassia Quick-Sort 8

Execution Example (cont.)

N

Recursive call, pivot selection

[72943761]
A
(24315123 4] [7 9 2]
ANCET T

EENEY

© 2004 Goodrich, Tamassia Quick-Sort 9

Execution Example (cont.)

N

Partition, ..., recursive call, base case

[72943761]
(24315123 4] (7972

151 [43934] - 959

© 2004 Goodrich, Tamassia Quick-Sort

10

Execution Example (cont.)

N

#Join, join

| 72943761 5123467709 |

P NREERRNE N

(24315123 4] (7972 > 729 |

151 [4§—>§4] - 959

© 2004 Goodrich, Tamassia Quick-Sort 11

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n — 1 and the other has size 0

The running time is proportional to the sum
n+(N—-1)+...+2+1

Thus, the worst-case running time of quick-sort is O(n?)

N

depth time
0 n [J
1 n-1 [] [)

© 2004 Goodrich, Tamassia Quick-Sort 12

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
= Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

N

(72943761] | 29843761]

7
(2431) (797) 1] (7984376]

Good call Bad call

A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

(1234567891011 121314 15 16 |
;Y_I\ ~ JH_I

Bad pivots Good pivots Bad pivots

© 2004 Goodrich, Tamassia Quick-Sort 13

Expected Running Time, Part 2

@ Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k
For a node of depth i, we expect
= i/2 ancestors are good calls
= The size of the input sequence for the current call is at most (3/4)"?n

Ther efOr'e, we have expected height time per level

= For a node of depth 2log,n, f I o
the expected input size is one
= The expected height of the
quick-sort tree is O(log n)
O(log n)

The amount or work done at the @) @)
nodes of the same depth is O(n) %—l

Thus, the expected running time
of quick-sort is O(n log n)

N

total expected time: O(n log n)

© 2004 Goodrich, Tamassia Quick-Sort 14

In-Place Quick-Sort

Quick-sort can be implemented
to run in-place

In the partition step, we use

N

Algorithm inPlaceQuickSort(S, I, r)

replace operations to rearrange Input sequence S, ranks | and r
the elements of the input Output sequence S with the
sequence such that elements of rank between | and r
= the elements less than the rearranged in increasing order
pivot have rank less than h ifl=r
= the elements equal to the pivot return
have rank between h and k | < a random integer between | and r
= the elements greater than the X < S.elemAtRank(i)
pivot have rank greater than k (h, k) « inPlacePartition(x)
The recursive calls consider inPlaceQuickSort(S, I, h — 1)
= elements with rank less than h inPlaceQuickSort(S,k + 1, r)
= elements with rank greater
than k

© 2004 Goodrich, Tamassia Quick-Sort 15

In-Place Partitioning

Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).
J k

(32510735927989769] (pivot =6)

Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

K -

(32510[7[3592]79897609]
| S— | S—

~

© 2004 Goodrich, Tamassia Quick-Sort 16

Summary of Sorting Algorithms

N

L

© 2004 Goodrich, Tamassia

Algorithm Time Notes
. 5 = in-place
selection-sort O(n) = slow (good for small inputs)
_ . 5 " in-place
Insertion-sort O(n) = slow (good for small inputs)
Jick-sort O(n log n) | = in-place, randomized
q expected = fastest (good for large inputs)
= in-place
heap-sort O(nlogn) |, fast (good for large inputs)
= sequential data access
merge-sort O(nlogn) |, fast (good for huge inputs)
Quick-Sort 17

«

Bucket-Sort

;
\
@ Let be S be a sequence of n Algorithm bucketSort(S, N)
(key, element) entries with Input sequence S of (key, element)
keys in the range [0, N — 1] items with keys in the range
@ Bucket-sort uses the keys as [0, N —1]
indices into an auxiliary array B Output sequence S sorted by
of sequences (buckets) Increasing keys
Phase 1: Empty sequence S by B « array of N empty sequences
moving each entry (k, 0) into while —S.empty()
its bucket BJK] (k, 0) « S.front()
Phase 2: Fori=0,...,N—1, move S.eraseFront()
the entries of bucket B[i] to the B[K].insertBack((k, 0))
end_ of sequence S for i e 0to N =1
@ Analysis: _ while —B[i].empty()
= Phase 1 takes O(n) time (k, 0) < B[i].front()
= Phase 2 takes O(n + N) time B[i].eraseFront()
Bucket-sort takes O(n + N) time S.insertBack((k, 0))

© 2004 Goodrich, Tamass|a BUCket-SOI‘t and RadiX-SOI‘t 18

Example

Key range [0, 9]

T—{ic

N
¥

1,¢c

Bz\-@\@@@f@@

© 2004 Goodrich, Tamass|a BUCket-SOI‘t and RadiX-SOI‘t 19

Properties and Extensions

.
\
Key-type Property Extensions ‘
= The keys are used as = Integer keys in the range [a, b]
indices into an array + Put entry (k, 0) into bucket
and cannot be arbitrary Blk—2]
objects = String keys from a set D of
possible strings, where D has
= No external comparator constant size (e.g., names of
Stable Sort Property the 13 provinces and
_ territories)
= The relat_lve orde_r of + Sort D and compute the rank
any two items with the r(k) of each string k of D in
same key is preserved the sorted sequence
after the execution of + Put entry (k, o) into bucket
the algorithm B[r(k)]

© 2004 Goodrich, Tamass|a BUCket-SOI‘t and RadiX-SOI‘t 20

Lexicographic Order

A d-tuple is a sequence of d keys (kq, ks, ..., ky), where
key k; is said to be the i-th dimension of the tuple

Example:
= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(X1s Xy eeny Xg) < (Y11 Y21 «ees Vo)
=

X1 <Y1V X =Y A (Xg, ooy Xg) < (Va5 oo+) Ya)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

N

© 2004 Goodrich, Tamass|a BUCket-SOI‘t and RadiX-SOI‘t 21

N

Let C, be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Lexicographic-Sort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i « d downto 1
stableSort(S, C))

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
(2,1,4) (3,2, 4) (51,5) (7,4,6) (2,4,6)
(2,1,4)(5,1,5) (3, 2,4) (7.4,6) (2,4,6)
(2,1,4)(2,4,6) (3,2,4) (51,5) (7,4,6)

© 2004 Goodrich, Tamass|a BUCket-SOI‘t and RadiX-SOI‘t 22

Radix-Sort

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

N

in each dimension Algorithm radixSort(S, N)

Radix-sort is applicable Input sequence S of d-tuples such
to tuples where the that (0, ..., 0) < (Xy, ..., xg) and
keys in each dimension i (Xgp e0s Xg) S(N=1, ..., N- 1)

for each tuple (Xq, «.ey Xg) IN S
Output sequence S sorted in
lexicographic order

for 1 « d downto 1
bucketSort(S, N)

are integers in the
range [0, N — 1]

Radix-sort runs in time
O(d(n + N))

© 2004 Goodrich, Tamass|a BUCket-SOI‘t and RadiX-SOI‘t 23

Radix-Sort for
Binary Numbers

Consider a sequence of n
b-bit integers
X=Xy «ee X1Xg
We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N =2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

N

= Ch

Algorithm binaryRadixSort(S)

Input sequence S of b-bit
Integers
Output sequence S sorted
replace each element x
of S with the item (0, x)

fori<0Otob—-1

replace the key k of
each item (k, x) of S
with bit x; of x

bucketSort(S, 2)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 24

Example

N

Sorting a sequence of 4-bit integers

© 2004 Goodrich, Tamassia

Bucket-Sort and Radix-Sort

) B8 O b o
P9 @9 @9 @O @D
) = @00 = @ =) BN = @
P @9 ©N @O @6
m9 @ @9 @9 @6

25

