
© 2004 Goodrich, Tamassia Quick-Sort 1

Quick-Sort, Bucket Sort,
Radix Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Sections 11.2, 11.3.2, 11.3.3

© 2004 Goodrich, Tamassia Quick-Sort 2

Quick-Sort

Quick-sort is a randomized
sorting algorithm based
on the divide-and-conquer
paradigm:

◼ Divide: pick a random
element x (called pivot) and
partition S into

 L elements less than x

 E elements equal x

 G elements greater than x

◼ Recur: sort L and G

◼ Conquer: join L, E and G

x

x

L GE

x

© 2004 Goodrich, Tamassia Quick-Sort 3

Partition
We partition an input
sequence as follows:

◼ We remove, in turn, each
element y from S and

◼ We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G  empty sequences

x  S.erase(p)

while S.empty()

y  S.eraseFront()

if y < x

L.insertBack(y)

else if y = x

E.insertBack(y)

else { y > x }

G.insertBack(y)

return L, E, G

© 2004 Goodrich, Tamassia Quick-Sort 4

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

◼ Each node represents a recursive call of quick-sort and stores

 Unsorted sequence before the execution and its pivot

 Sorted sequence at the end of the execution

◼ The root is the initial call

◼ The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

© 2004 Goodrich, Tamassia Quick-Sort 5

Execution Example

Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 89 4 → 4 9

9 → 9 4 → 4

© 2004 Goodrich, Tamassia Quick-Sort 6

Execution Example (cont.)

Partition, recursive call, pivot selection

2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 82 → 2

© 2004 Goodrich, Tamassia Quick-Sort 7

Execution Example (cont.)

Partition, recursive call, base case

2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

© 2004 Goodrich, Tamassia Quick-Sort 8

Execution Example (cont.)

Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

© 2004 Goodrich, Tamassia Quick-Sort 9

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

© 2004 Goodrich, Tamassia Quick-Sort 10

Execution Example (cont.)

Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

© 2004 Goodrich, Tamassia Quick-Sort 11

Execution Example (cont.)

Join, join

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

© 2004 Goodrich, Tamassia Quick-Sort 12

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n - 1 and the other has size 0

The running time is proportional to the sum

n + (n - 1) + … + 2 + 1

Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

© 2004 Goodrich, Tamassia Quick-Sort 13

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

◼ Good call: the sizes of L and G are each less than 3s/4

◼ Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2

◼ 1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 9 8 4 3 7 61

7 2 9 8 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

© 2004 Goodrich, Tamassia Quick-Sort 14

Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k

For a node of depth i, we expect

◼ i/2 ancestors are good calls

◼ The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have
◼ For a node of depth 2log4/3n,

the expected input size is one

◼ The expected height of the
quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

© 2004 Goodrich, Tamassia Quick-Sort 15

In-Place Quick-Sort
Quick-sort can be implemented
to run in-place

In the partition step, we use
replace operations to rearrange
the elements of the input
sequence such that

◼ the elements less than the
pivot have rank less than h

◼ the elements equal to the pivot
have rank between h and k

◼ the elements greater than the
pivot have rank greater than k

The recursive calls consider
◼ elements with rank less than h

◼ elements with rank greater
than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and r

Output sequence S with the
elements of rank between l and r
rearranged in increasing order

if l  r

return

i  a random integer between l and r

x  S.elemAtRank(i)

(h, k)  inPlacePartition(x)

inPlaceQuickSort(S, l, h - 1)

inPlaceQuickSort(S, k + 1, r)

© 2004 Goodrich, Tamassia Quick-Sort 16

In-Place Partitioning
Perform the partition using two indices to split S into L
and E U G (a similar method can split E U G into E and G).

Repeat until j and k cross:
◼ Scan j to the right until finding an element > x.

◼ Scan k to the left until finding an element < x.

◼ Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

© 2004 Goodrich, Tamassia Quick-Sort 17

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)
▪ in-place

▪ slow (good for small inputs)

insertion-sort O(n2)
▪ in-place

▪ slow (good for small inputs)

quick-sort
O(n log n)

expected

▪ in-place, randomized

▪ fastest (good for large inputs)

heap-sort O(n log n)
▪ in-place

▪ fast (good for large inputs)

merge-sort O(n log n)
▪ sequential data access

▪ fast (good for huge inputs)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 18

Bucket-Sort
Let be S be a sequence of n
(key, element) entries with
keys in the range [0, N - 1]

Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into
its bucket B[k]

Phase 2: For i = 0, …, N - 1, move
the entries of bucket B[i] to the
end of sequence S

Analysis:
◼ Phase 1 takes O(n) time

◼ Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time

Algorithm bucketSort(S, N)

Input sequence S of (key, element)
items with keys in the range
[0, N - 1]

Output sequence S sorted by
increasing keys

B  array of N empty sequences

while S.empty()

(k, o)  S.front()

S.eraseFront()

B[k].insertBack((k, o))

for i  0 to N - 1

while B[i].empty()

(k, o)  B[i].front()

B[i].eraseFront()

S.insertBack((k, o))

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 19

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2

0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g3, b3, a 7, e

      

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 20

Properties and Extensions

Key-type Property

◼ The keys are used as
indices into an array
and cannot be arbitrary
objects

◼ No external comparator

Stable Sort Property

◼ The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
◼ Integer keys in the range [a, b]

 Put entry (k, o) into bucket
B[k - a]

◼ String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 13 provinces and
territories)
 Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

 Put entry (k, o) into bucket
B[r(k)]

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 21

Lexicographic Order

A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple

Example:

◼ The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively

defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)



x1 < y1  x1 = y1  (x2, …, xd) < (y2, …, yd)

I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 22

Lexicographic-Sort
Let Ci be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in

lexicographic order

for i  d downto 1

stableSort(S, Ci)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 23

Radix-Sort
Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension

Radix-sort is applicable
to tuples where the
keys in each dimension i

are integers in the
range [0, N - 1]

Radix-sort runs in time
O(d(n + N))

Algorithm radixSort(S, N)

Input sequence S of d-tuples such

that (0, …, 0)  (x1, …, xd) and
(x1, …, xd)  (N - 1, …, N - 1)
for each tuple (x1, …, xd) in S

Output sequence S sorted in
lexicographic order

for i  d downto 1

bucketSort(S, N)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 24

Radix-Sort for
Binary Numbers

Consider a sequence of n
b-bit integers

x = xb - 1 … x1x0

We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

Algorithm binaryRadixSort(S)

Input sequence S of b-bit
integers

Output sequence S sorted

replace each element x
of S with the item (0, x)

for i  0 to b - 1

replace the key k of
each item (k, x) of S
with bit xi of x

bucketSort(S, 2)

© 2004 Goodrich, Tamassia Bucket-Sort and Radix-Sort 25

Example

Sorting a sequence of 4-bit integers

1001

0010

1101

0001

1110

0010

1110

1001

1101

0001

1001

1101

0001

0010

1110

1001

0001

0010

1101

1110

0001

0010

1001

1101

1110

