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Merge Sort and
Sorting Lower Bound

7  2  9  4  → 2  4  7  9

7  2  → 2  7 9  4  → 4  9

7 → 7 2 → 2 9 → 9 4 → 4

Sections 11.1 and 11.3.1
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Divide-and-Conquer

Divide-and conquer is a 
general algorithm design 
paradigm:
◼ Divide: divide the input data 

S in two disjoint subsets S1

and S2

◼ Recur: solve the 
subproblems associated 
with S1 and S2

◼ Conquer: combine the 
solutions for S1 and S2 into a 
solution for S

The base case for the 
recursion are often 
subproblems of size 1 or 2

Merge-sort is a sorting 
algorithm based on the 
divide-and-conquer 
paradigm 

Like heap-sort
◼ It uses a comparator

◼ It has O(n log n) running 
time

Unlike heap-sort
◼ It does not use an 

auxiliary priority queue

◼ It accesses data in a 
sequential manner 
(suitable to sort data on a 
disk)



Merge Sort 3

Merge-Sort

Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
◼ Divide: partition S into 

two sequences S1 and S2

of about n/2 elements 
each

◼ Recur: recursively sort S1

and S2

◼ Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2)  partition(S, n/2) 

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)
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Merging Two Sorted Sequences
The conquer step of 
merge-sort consists 
of merging two 
sorted sequences A 
and B into a sorted 
sequence S 
containing the union 
of the elements of A 
and B

Merging two sorted 
sequences, each 
with n/2 elements 
and implemented by 
means of a doubly 
linked list, takes 
O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each 

Output sorted sequence of A  B

S  empty sequence

while A.empty()   B.empty()

if A.front() < B.front()

S.addBack(A.front()); A.eraseFront();

else

S.addBack(B.front()); B.eraseFront();

while A.empty()

S.addBack(A.front()); A.eraseFront();

while B.empty()

S.addBack(B.front()); B.eraseFront();

return S
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Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
◼ each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition

 sorted sequence at the end of the execution

◼ the root is the initial call 

◼ the leaves are calls on subsequences of size 1

7  2  9  4  → 2  4  7  9

7  2  → 2  7 9  4  → 4  9

7 → 7 2 → 2 9 → 9 4 → 4
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Execution Example

Partition

7  2  9  4  → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2  → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, partition

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2  → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, partition

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 9  4  → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, base case, merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 94 → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9

9 → 9 4 → 4
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Execution Example (cont.)

Merge

7  2  9  4 → 2  4  7  9 3  8  6  1  → 1  3  8  6

7  2 → 2  7 94 → 4  9 3  8  → 3  8 6  1  → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, merge, merge

7  2  9  4 → 2  4  7  9 3  86  1 → 1  3  6  8

7  2 → 2  7 9  4 → 4  9 3  8 → 3  8 61 → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Merge

7  2  9  4 → 2  4  7  9 3  86  1 → 1  3  6  8

7  2 → 2  7 9  4 → 4  9 38 → 3  8 61 → 1  6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7  2  9  4  3  8  6  1 → 1  2  3  4  6  7  8  9
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Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

◼ at each recursive call we divide the sequence in half, 

The overall amount of work done at the nodes of depth i is O(n)

◼ we partition and merge 2i sequences of size n/2i

◼ we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …



Merge Sort 17

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)

▪ slow

▪ in-place

▪ for small data sets (< 1K)

insertion-sort O(n2)

▪ slow

▪ in-place

▪ for small data sets (< 1K)

heap-sort O(n log n)

▪ fast

▪ in-place

▪ for large data sets (1K — 1M)

merge-sort O(n log n)

▪ fast

▪ sequential data access

▪ for huge data sets (> 1M)
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Sorting Lower Bound
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Comparison-Based Sorting

Many sorting algorithms are comparison based.
◼ They sort by making comparisons between pairs of objects

◼ Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, 
merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running 
time of any algorithm that uses comparisons to sort n 
elements, x1, x2, …, xn.

Is xi < xj?

yes

no
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Counting Comparisons
Let us just count comparisons then.

Each possible run of the algorithm corresponds 
to a root-to-leaf path in a decision tree
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Decision Tree Height
The height of the decision tree is a lower bound on the running time

Each leaf specifies how to “unscramble” an input permutation.

Every input permutation must lead to a separate leaf.

There are n!=12  … n leaves.

So the height is at least log (n!)
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minimum height (time)
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The Lower Bound

Any comparison-based sorting algorithms takes at 
least log (n!) time

Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must 
run in W(n log n) time.
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The Lower Bound
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