>Merge Sort and
Sorting Lower Bound

Sections 11.1 and 11.3.1
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Divide-and-Conquer

N

# Divide-and conquer is a # Merge-sort is a sorting
general algorithm design algorithm based on the
paradigm: divide-and-conquer

= Divide: divide the input data paradigm
S in two disjoint subsets S, # Like heap-sort
and S,

m It uses a comparator
= It has O(n log n) running
time
# Unlike heap-sort

= Recur: solve the
subproblems associated
with S, and S,

= Conquer: combine the

solutions for S; and S, into a = It does not use an
solution for S auxiliary priority queue
# The base case for the = It accesses data in a
recursion are often sequential manner
subproblems of size 1 or 2 é?’“l'(t)ab'e to sort data on a
IS
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Merge-Sort

N

# Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S, and S,

of about n/2 elements
each

= Recur: recursively sort S,
and S,

= Conquer: merge S, and
S, into a unique sorted
sequence

Merge Sort

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted
according to C

If S.size() > 1
(S;, S,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S;, S,)




Merging Two Sorted Sequences

p
<V
# The conquer step of Algorithm merge(A, B)
merge-sort consists Input sequences A and B with
of merging two n/2 elements each
sorted sequences A Output sorted sequence of A U B
and B into a sorted
sequence S S « empty sequence
containing the union while —A.empty() A —=B.empty()
of the elements of A if A.front() < B.front()
and B S.addBack(A.front()); A.eraseFront();
# Merging two sorted else
sequences, each S.addBack(B.front()); B.eraseFront();
with n/2 elements while —A.empty()
and implemented by S.addBack(A.front()); A.eraseFront();
Fqiagslpi at dISUbly while —B.empty()
INKEA IS, LaKES S.addBack(B.front()); B.eraseFront();
O(n) time
return S
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Merge-Sort Tree

| # An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 1
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Execution Example
# Partition

N

729413861 ]
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Execution Example (cont.)

N

# Recursive call, partition

(729413861 ]

© 2004 Goodrich, Tamassia Merge Sort 7



Execution Example (cont.)

N

# Recursive call, partition

(729413861 ]

(72194
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“Execution Example (cont.)

# Recursive call, base case

(729413861 ]
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(72194 ] [ ]
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Execution Example (cont.)

#Recursive call, base case

(729413861 ]
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“Execution Example (cont.)

#Merge

(729413861 ]




Execution Example (cont.)

#Recursive call, ..., base case, merge

(729413861 ]

/\ _________
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“Execution Example (cont.)

#Merge

(729413861 ]

s

7219452479
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“Execution Example (cont.)

#Recursive call, ..., merge, merge

(729413861 ]
/\
(7219452479 [38l6 15136 8]
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“Execution Example (cont.)

#Merge

729413861 5123467809]
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Analysis of Merge-Sort

# The height h of the merge-sort tree is O(log n)
= at each recursive call we divide the sequence in half,

# The overall amount of work done at the nodes of depth iis O(n)
= we partition and merge 2' sequences of size n/2!
= we make 2+ recursive calls

# Thus, the total running time of merge-sort is O(n log n)

N

depth #seqgs size

0 1 n [ ]
1 2 n/2 [ ] [ ]
| 21 n/2t |

) | ]| ) l
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Summary of Sorting Algorithms

Algorithm

Time |Notes

selection-sort

O(n?) :

slow
in-place
for small data sets (< 1K)

insertion-sort

O(n?) :

slow
in-place
for small data sets (< 1K)

heap-sort

O(nlogn) |-=

fast
in-place
for large data sets (1K — 1M)

merge-sort

O(nlogn) |=

fast
sequential data access
for huge data sets (> 1M)

Merge Sort
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Sorting Lower Bound

AN
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Comparison-Based Sorting

# Many sorting algorithms are comparison based.
= They sort by making comparisons between pairs of objects
= Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...
# Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, Xy, X5, ..., X,.
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Counting Comparisons

" @letus just count comparisons then.

# Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

? ? ? 2
Xe<Xf.j[Xk<Xl.j [Xm<X0.j[Xp<Xq.

/N /N /N /N
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Decision Tree Height

3 The height of the decision tree is a lower bound on the running time

Each leaf specifies how to “unscramble” an input permutation.
Every input permutation must lead to a separate leaf.

There are n!=1.2 - ... -n leaves.

So the height is at least log (n!)

> @ e

minimum height (time)

A

log (n!)

T
=)
Y
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The Lower Bound

# Any comparison-based sorting algorithms takes at
least log (n!) time

# Therefore, any such algorithm takes time at least

N

n

log (n!) > log (2)2 _(n/2)log(n/2).

# That is, any comparison-based sorting algorithm must
run in Q(n log n) time.
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The Lower Bound

N

@The preceding argument uses the fact that

s ()

which we can easily see by writing out what n! means:

n!:n.(n_1).....(%4_1).%.(%_1). e 2241
2n-(n—1)--~-(g+1)
> 213 EERREY:
Y
gfactors
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