Merge Sort and Sorting Lower Bound

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data
 S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are often subproblems of size 1 or 2

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has O(n log n) running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S₁ and S₂
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm *mergeSort(S, C)*

Input sequence S with n elements, comparator C Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ mergeSort(S₁, C) mergeSort(S₂, C) $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

 The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B

Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time Algorithm merge(A, B)Input sequences A and B with
n/2 elements eachOutput sorted sequence of $A \cup B$ $S \leftarrow$ empty sequence
while $\neg A.empty() \land \neg B.empty()$
if A.front() < B.front()
S.addBack(A.front()); A.eraseFront();
else

S.addBack(B.front()); B.eraseFront(); while ¬A.empty() S.addBack(A.front()); A.eraseFront(); while ¬B.empty() S.addBack(B.front()); B.eraseFront(); return S

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 1

© 2004 Goodrich, Tamassia

Merge Sort

Execution Example (cont.)

© 2004 Goodrich, Tamassia

Merge Sort

Execution Example (cont.) Recursive call, ..., base case, merge 7 2 9 4 3 8 6 1 7294 $7 \mid 2 \rightarrow 2 7$ $9 | 4 \rightarrow 4 9$ $2 \rightarrow 2$ $9 \rightarrow 9$ $7 \rightarrow 7$ $4 \rightarrow 4$

Execution Example (cont.)

Analysis of Merge-Sort

- The height *h* of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide the sequence in half,
- The overall amount of work done at the nodes of depth *i* is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	O (n ²)	 slow in-place for small data sets (< 1K)
insertion-sort	O (n ²)	 slow in-place for small data sets (< 1K)
heap-sort	O (n log n)	 fast in-place for large data sets (1K — 1M)
merge-sort	O (n log n)	 fast sequential data access for huge data sets (> 1M)

Sorting Lower Bound

© 2004 Goodrich, Tamassia

Sorting Lower Bound

Comparison-Based Sorting

Many sorting algorithms are comparison based.

- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Counting Comparisons

Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

- The height of the decision tree is a lower bound on the running time
- Each leaf specifies how to "unscramble" an input permutation.
- Every input permutation must lead to a separate leaf.
- There are $n!=1\cdot 2 \cdot \dots \cdot n$ leaves.
- So the height is at least log (n!)

The Lower Bound

 Any comparison-based sorting algorithms takes at least log (n!) time
 Therefore, any such algorithm takes time at least

$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2).$$

That is, any comparison-based sorting algorithm must run in Ω(n log n) time.

The Lower Bound

 $n! \geq \left(\frac{n}{2}\right)^{\frac{n}{2}}$

The preceding argument uses the fact that

which we can easily see by writing out what n! means:

