
© 2004 Goodrich, Tamassia Merge Sort 1

Merge Sort and
Sorting Lower Bound

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Sections 11.1 and 11.3.1

Merge Sort 2

Divide-and-Conquer

Divide-and conquer is a
general algorithm design
paradigm:
◼ Divide: divide the input data

S in two disjoint subsets S1

and S2

◼ Recur: solve the
subproblems associated
with S1 and S2

◼ Conquer: combine the
solutions for S1 and S2 into a
solution for S

The base case for the
recursion are often
subproblems of size 1 or 2

Merge-sort is a sorting
algorithm based on the
divide-and-conquer
paradigm

Like heap-sort
◼ It uses a comparator

◼ It has O(n log n) running
time

Unlike heap-sort
◼ It does not use an

auxiliary priority queue

◼ It accesses data in a
sequential manner
(suitable to sort data on a
disk)

Merge Sort 3

Merge-Sort

Merge-sort on an input
sequence S with n
elements consists of
three steps:
◼ Divide: partition S into

two sequences S1 and S2

of about n/2 elements
each

◼ Recur: recursively sort S1

and S2

◼ Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2) partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S merge(S1, S2)

© 2004 Goodrich, Tamassia Merge Sort 4

Merging Two Sorted Sequences
The conquer step of
merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of A B

S empty sequence

while A.empty() B.empty()

if A.front() < B.front()

S.addBack(A.front()); A.eraseFront();

else

S.addBack(B.front()); B.eraseFront();

while A.empty()

S.addBack(A.front()); A.eraseFront();

while B.empty()

S.addBack(B.front()); B.eraseFront();

return S

© 2004 Goodrich, Tamassia Merge Sort 5

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree
◼ each node represents a recursive call of merge-sort and stores

 unsorted sequence before the execution and its partition

 sorted sequence at the end of the execution

◼ the root is the initial call

◼ the leaves are calls on subsequences of size 1

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

© 2004 Goodrich, Tamassia Merge Sort 6

Execution Example

Partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 7

Execution Example (cont.)

Recursive call, partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 8

Execution Example (cont.)

Recursive call, partition

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 9

Execution Example (cont.)

Recursive call, base case

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 10

Execution Example (cont.)

Recursive call, base case

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 11

Execution Example (cont.)

Merge

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 12

Execution Example (cont.)

Recursive call, …, base case, merge

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 94 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

9 → 9 4 → 4

© 2004 Goodrich, Tamassia Merge Sort 13

Execution Example (cont.)

Merge

7 2 9 4 → 2 4 7 9 3 8 6 1 → 1 3 8 6

7 2 → 2 7 94 → 4 9 3 8 → 3 8 6 1 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 14

Execution Example (cont.)

Recursive call, …, merge, merge

7 2 9 4 → 2 4 7 9 3 86 1 → 1 3 6 8

7 2 → 2 7 9 4 → 4 9 3 8 → 3 8 61 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 15

Execution Example (cont.)

Merge

7 2 9 4 → 2 4 7 9 3 86 1 → 1 3 6 8

7 2 → 2 7 9 4 → 4 9 38 → 3 8 61 → 1 6

7 → 7 2 → 2 9 → 9 4 → 4 3 → 3 8 → 8 6 → 6 1 → 1

7 2 9 4 3 8 6 1 → 1 2 3 4 6 7 8 9

© 2004 Goodrich, Tamassia Merge Sort 16

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

◼ at each recursive call we divide the sequence in half,

The overall amount of work done at the nodes of depth i is O(n)

◼ we partition and merge 2i sequences of size n/2i

◼ we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n

1 2 n/2

i 2i n/2i

… … …

Merge Sort 17

Summary of Sorting Algorithms

Algorithm Time Notes

selection-sort O(n2)

▪ slow

▪ in-place

▪ for small data sets (< 1K)

insertion-sort O(n2)

▪ slow

▪ in-place

▪ for small data sets (< 1K)

heap-sort O(n log n)

▪ fast

▪ in-place

▪ for large data sets (1K — 1M)

merge-sort O(n log n)

▪ fast

▪ sequential data access

▪ for huge data sets (> 1M)

© 2004 Goodrich, Tamassia Sorting Lower Bound 18

Sorting Lower Bound

Sorting Lower Bound 19

Comparison-Based Sorting

Many sorting algorithms are comparison based.
◼ They sort by making comparisons between pairs of objects

◼ Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, x1, x2, …, xn.

Is xi < xj?

yes

no

Sorting Lower Bound 20

Counting Comparisons
Let us just count comparisons then.

Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

© 2019 Shermer

Decision Tree Height
The height of the decision tree is a lower bound on the running time

Each leaf specifies how to “unscramble” an input permutation.

Every input permutation must lead to a separate leaf.

There are n!=12 … n leaves.

So the height is at least log (n!)

Sorting Lower Bound 21

minimum height (time)

log (n!)

x
i
 < x

j
 ?

x
a
 < x

b
 ?

x
m
 < x

o
 ? x

p
 < x

q
 ?x

e
 < x

f
 ? x

k
 < x

l
 ?

x
c
 < x

d
 ?

n!

© 2004 Goodrich, Tamassia Sorting Lower Bound 22

The Lower Bound

Any comparison-based sorting algorithms takes at
least log (n!) time

Therefore, any such algorithm takes time at least

That is, any comparison-based sorting algorithm must
run in W(n log n) time.

).2/(log)2/(
2

log)!(log
2

nn
n

n

n

=

© 2019 Shermer

The Lower Bound

Sorting Lower Bound 23

