
© 2004 Goodrich, Tamassia AVL Trees 1

AVL Trees and
(2,4) Trees

6

3 8

4

v

z

Sections 10.2 and 10.4

AVL Trees 2

AVL Tree Definition

AVL trees are
balanced

An AVL Tree is a
binary search tree
such that for every
internal node v of T,
the heights of the
children of v can
differ by at most 1

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the

heights are shown next to the nodes

AVL Trees 3

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).

Proof: Let us bound g(h): the minimum number of internal
nodes of an AVL tree of height h.

We easily see that g(1) = 1 and g(2) = 2

For h > 2, a minimal AVL tree of height h contains the root,
one AVL subtree of height h-1 and another of height h-2.

That is, g(h) = 1 + g(h-1) + g(h-2)

Knowing g(h-1) > g(h-2), we get g(h) > 2g(h-2). So
g(h) > 2g(h-2), g(h) > 4g(h-4), g(h) > 8g(h-6), … (by induction),

g(h) > 2ig(h-2i)

Solving the base case we get: g(h) > 2 h/2-1

Taking logarithms: log g(h) > h/2 – 1, or h < 2log g(h) +2

Thus the height of an AVL tree is O(log g(h)) = O(log n)

3

4 n(1)

n(2)

© 2019 Shermer

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node w.

AVL Trees 4

44

17 78

32 50 88

48 62

54
w

x

y

z

44

17 78

32 50 88

48 62

before insertion after insertion

z is first unbalanced

node encountered

walking up tree

from w.

y is the child of z

with greater height.

x is the child of y

with greater height.

x might be w.

© 2019 Shermer

Tree Rotation
Rotation is a fundamental restructuring operation for binary
search trees.

AVL Trees 5

b

a

T0

T1 T2

ba

T0 T1 T2

b

a

T0 T1

T2

Inorder listing is the same before and after rotation.

left rotation

right rotation

© 2004 Goodrich, Tamassia AVL Trees 6

Trinode Restructuring
let (a,b,c) be an inorder listing of x, y, z

perform the rotations needed to make b the topmost node of
the three

b=y

a=z

c=x

T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3
b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation

(a left rotation about a)

case 2: double rotation

(a right rotation about c,

then a left rotation about a)

(other two cases

are symmetrical)

AVL Trees 7

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6

7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1

54

1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced

1

2

3

4

5

6

7

T1

AVL Trees 8

Restructuring
(as Single Rotations)

Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

T3
T2

T1

T0

a = x

b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

AVL Trees 9

Restructuring
(as Double Rotations)

double rotations:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y

AVL Trees 10

Removal
Removal begins as in a binary search tree, which
means the node removed will become an empty
external node. Its parent, w, may cause an imbalance.

Example:
44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

AVL Trees 11

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling
up the tree from w. Also, let y be the child of z with the larger
height, and let x be the child of y with the larger height

We perform restructure(x) to restore balance at z

As this restructuring may upset the balance of another node
higher in the tree, we must continue checking for balance until
the root of T is reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

© 2004 Goodrich, Tamassia AVL Trees 12

AVL Tree Performance
a single restructure takes O(1) time

◼ using a linked-structure binary tree

find takes O(log n) time

◼ height of tree is O(log n), no restructures needed

put takes O(log n) time

◼ initial find is O(log n)

◼ Restructuring up the tree, maintaining heights is O(log n)

erase takes O(log n) time

◼ initial find is O(log n)

◼ Restructuring up the tree, maintaining heights is O(log n)

Multi-Way Search Tree

(2,4) Trees 13

A multi-way search tree is an ordered tree such that
◼ Each internal node has at least two children and stores d -1

key-element items (ki, oi), where d is the number of children

◼ For a node with children v1 v2 … vd storing keys k1 k2 … kd-1

 keys in the subtree of v1 are less than k1

 keys in the subtree of vi are between ki-1 and ki (i = 2, …, d - 1)

 keys in the subtree of vd are greater than kd-1

◼ The leaves store no items and serve as placeholders

11 24

2 6 8 15

30

27 32

Multi-Way Inorder Traversal

(2,4) Trees 14

We can extend the notion of inorder traversal from binary trees
to multi-way search trees

Namely, we visit item (ki, oi) of node v between the recursive
traversals of the subtrees of v rooted at children vi and vi + 1

An inorder traversal of a multi-way search tree visits the keys in
increasing order

11 24

2 6 8 15

30

27 32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16

Multi-Way Searching

(2,4) Trees 15

Similar to search in a binary search tree

A each internal node with children v1 v2 … vd and keys k1 k2 … kd-1

◼ k = ki (i = 1, …, d - 1): the search terminates successfully

◼ k < k1: we continue the search in child v1

◼ ki-1 < k < ki (i = 2, …, d - 1): we continue the search in child vi

◼ k > kd-1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully

Example: search for 30

11 24

2 6 8 15

30

27 32

(2,4) Trees

(2,4) Trees 16

A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way
search tree with the following properties
◼ Node-Size Property: every internal node has at most four children

◼ Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

10 15 24

2 8 12 27 3218

Height of a (2,4) Tree

(2,4) Trees 17

Theorem: A (2,4) tree storing n items has height O(log n)

Proof:
◼ Let h be the height of a (2,4) tree with n items

◼ Since there are at least 2i items at depth i = 0, … , h - 1 and no
items at depth h, we have

n 1 + 2 + 4 + … + 2h-1 = 2h - 1

◼ Thus, h log (n + 1)

Searching in a (2,4) tree with n items takes O(log n) time

1

2

2h-1

0

items

0

1

h-1

h

depth

Insertion

(2,4) Trees 18

We insert a new item (k, o) at the parent v of the leaf reached by
searching for k

◼ We preserve the depth property but

◼ We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

27 32 35

10 15 24

2 8 12 18

10 15 24

2 8 12 27 30 32 3518

v

v

Overflow and Split

(2,4) Trees 19

We handle an overflow at a 5-node v with a split operation:

◼ let v1 … v5 be the children of v and k1 … k4 be the keys of v

◼ node v is replaced nodes v' and v"

 v' is a 3-node with keys k1 k2 and children v1 v2 v3

 v" is a 2-node with key k4 and children v4 v5

◼ key k3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u

15 24

12 27 30 32 3518

v

u

v1 v2 v3 v4 v5

15 24 32

12 27 3018

v'

u

v1 v2 v3 v4 v5

35

v"

Analysis of Insertion

(2,4) Trees 20

Algorithm put(k, o)

1. We search for key k to locate

the insertion node v

2. We add the new entry (k, o) at

node v

3. while overflow(v)

if isRoot(v)

create a new empty root

above v

v split(v)

Let T be a (2,4) tree
with n items

◼ Tree T has O(log n)

height

◼ Step 1 takes O(log n)

time because we visit
O(log n) nodes

◼ Step 2 takes O(1) time

◼ Step 3 takes O(log n)

time because each split
takes O(1) time and we
perform O(log n) splits

Thus, an insertion in a
(2,4) tree takes O(log n)

time

Deletion

(2,4) Trees 21

We reduce deletion of an entry to the case where the item is at the node
with leaf children

Otherwise, we replace the entry with its inorder successor (or, equivalently,
with its inorder predecessor) and delete the latter entry

Example: to delete key 24, we replace it with 27 (inorder successor)

27 32 35

10 15 24

2 8 12 18

32 35

10 15 27

2 8 12 18

Underflow and Fusion

(2,4) Trees 22

Deleting an entry from a node v may cause an underflow, where
node v becomes a 1-node with one child and no keys

To handle an underflow at node v with parent u, we consider two
cases

Case 1: the adjacent siblings of v are 2-nodes
◼ Fusion operation: we merge v with an adjacent sibling w and move

an entry from u to the merged node v'

◼ After a fusion, the underflow may propagate to the parent u

9 14

2 5 7 10

u

v

9

10 14

u

v'w
2 5 7

Underflow and Transfer

(2,4) Trees 23

To handle an underflow at node v with parent u, we consider
two cases

Case 2: an adjacent sibling w of v is a 3-node or a 4-node

◼ Transfer operation:

1. we move a child of w to v

2. we move an item from u to v

3. we move an item from w to u

◼ After a transfer, no underflow occurs

4 9

6 82

u

vw

4 8

62 9

u

vw

Analysis of Deletion

(2,4) Trees 24

Let T be a (2,4) tree with n items
◼ Tree T has O(log n) height

In a deletion operation
◼ We visit O(log n) nodes to locate the node from

which to delete the entry

◼ We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

◼ Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes
O(log n) time

Comparison of Map Implementations

(2,4) Trees 25

Find Put Erase Notes

Hash
Table

1
expected

1
expected

1
expected

o no ordered map
methods

o simple to implement

Skip List log n
high prob.

log n
high prob.

log n
high prob.

o randomized insertion

o simple to implement

AVL and
(2,4)
Tree

log n
worst-case

log n
worst-case

log n
worst-case

o complex to implement

