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AVL Trees and
(2,4) Trees
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AVL Tree Definition

AVL trees are 
balanced

An AVL Tree is a 
binary search tree
such that for every 
internal node v of T, 
the heights of the 
children of v can 
differ by at most 1
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An example of an AVL tree where the 

heights are shown next to the nodes
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Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).

Proof: Let us bound g(h): the minimum number of internal 
nodes of an AVL tree of height h.

We easily see that g(1) = 1 and g(2) = 2

For h > 2, a minimal AVL tree of height h contains the root, 
one AVL subtree of height h-1 and another of height h-2.

That is, g(h) = 1 + g(h-1) + g(h-2)

Knowing g(h-1) > g(h-2), we get g(h) > 2g(h-2). So
g(h) > 2g(h-2), g(h) > 4g(h-4), g(h) > 8g(h-6), … (by induction),

g(h) > 2ig(h-2i)

Solving the base case we get: g(h) > 2 h/2-1

Taking logarithms: log g(h) > h/2 – 1, or h < 2log g(h) +2

Thus the height of an AVL tree is O(log g(h)) = O(log n)
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Insertion
Insertion is as in a binary search tree
Always done by expanding an external node w.
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before insertion after insertion

z is first unbalanced

node encountered 

walking up tree 

from w.

y is the child of z 

with greater height.

x is the child of y 

with greater height.  

x might be w.
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Tree Rotation
Rotation is a fundamental restructuring operation for binary 
search trees.
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Trinode Restructuring
let (a,b,c) be an inorder listing of x, y, z

perform the rotations needed to make b the topmost node of 
the three

b=y

a=z

c=x

T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3
b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation

(a left rotation about a)

case 2: double rotation

(a right rotation about c, 

then a left rotation about a)

(other two cases 

are symmetrical)
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Insertion Example, continued
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Restructuring 
(as Single Rotations)

Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x

b = y

a = z
single rotation

T3
T2

T1

T0

a = x

b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation
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Restructuring 
(as Double Rotations)

double rotations:

double rotationa = z

b = x

c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y
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Removal
Removal begins as in a binary search tree, which 
means the node removed will become an empty 
external node. Its parent, w, may cause an imbalance.

Example: 
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8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion
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Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling 
up the tree from w. Also, let y be the child of z with the larger 
height, and let x be the child of y with the larger height

We perform restructure(x) to restore balance at z

As this restructuring may upset the balance of another node 
higher in the tree, we must continue checking for balance until 
the root of T is reached
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AVL Tree Performance
a single restructure takes O(1) time

◼ using a linked-structure binary tree

find takes O(log n) time

◼ height of tree is O(log n), no restructures needed

put takes O(log n) time

◼ initial find is O(log n)

◼ Restructuring up the tree, maintaining heights is O(log n)

erase takes O(log n) time

◼ initial find is O(log n)

◼ Restructuring up the tree, maintaining heights is O(log n)



Multi-Way Search Tree
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A multi-way search tree is an ordered tree such that 
◼ Each internal node has at least two children and stores  d -1 

key-element items (ki, oi), where d is the number of children 

◼ For a node with children v1 v2 … vd storing  keys k1 k2 … kd-1

 keys in the subtree of v1 are less than k1

 keys in the subtree of vi are between ki-1 and ki (i = 2, …, d - 1)

 keys in the subtree of vd are greater than kd-1

◼ The leaves store no items and serve as placeholders

11    24

2   6   8 15

30

27    32



Multi-Way Inorder Traversal
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We can extend the notion of inorder traversal from binary trees 
to multi-way search trees

Namely, we visit item (ki, oi) of node v between the recursive 
traversals of the subtrees of v rooted at children vi and vi + 1

An inorder traversal of a multi-way search tree visits the keys in 
increasing order

11    24

2   6   8 15

30

27    32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16



Multi-Way Searching
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Similar to search in a binary search tree

A each internal node with children v1 v2 … vd and keys k1 k2 … kd-1

◼ k = ki (i = 1, …, d - 1): the search terminates successfully

◼ k < k1: we continue the search in child v1

◼ ki-1 < k < ki (i = 2, …, d - 1): we continue the search in child vi

◼ k > kd-1: we continue the search in child vd

Reaching an external node terminates the search unsuccessfully

Example: search for 30

11    24

2   6   8 15

30

27    32



(2,4) Trees
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A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way 
search tree with the following properties
◼ Node-Size Property: every internal node has at most four children

◼ Depth Property: all the external nodes have the same depth

Depending on the number of children, an internal node of a 
(2,4) tree is called a 2-node, 3-node or 4-node

10   15   24

2   8 12 27    3218



Height of a (2,4) Tree
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Theorem: A (2,4) tree storing n items has height O(log n)

Proof:
◼ Let h be the height of a (2,4) tree with n items

◼ Since there are at least 2i items at depth i = 0, … , h - 1 and no 
items at depth h, we have

n  1 + 2 + 4 + … + 2h-1 = 2h - 1

◼ Thus, h  log (n + 1)

Searching in a (2,4) tree with n items takes O(log n) time

1

2

2h-1
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Insertion
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We insert a new item (k, o) at the parent v of the leaf reached by 
searching for k

◼ We preserve the depth property but 

◼ We may cause an overflow (i.e., node v may become a 5-node)

Example: inserting key 30 causes an overflow

27   32   35

10   15   24

2   8 12 18

10   15   24

2   8 12 27   30 32   3518

v

v



Overflow and Split
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We handle an overflow at a 5-node v with a split operation:

◼ let v1 … v5 be the children of v and  k1 … k4 be the keys of v

◼ node v is replaced nodes v' and v"

 v' is a 3-node with keys k1 k2 and children v1 v2 v3

 v" is a 2-node with key k4 and children v4 v5

◼ key k3 is inserted into the parent u of v (a new root may be created)

The overflow may propagate to the parent node u

15   24

12 27  30  32 3518

v

u

v1 v2 v3 v4 v5

15 24  32

12 27  3018

v'

u

v1 v2 v3 v4 v5

35

v"



Analysis of Insertion
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Algorithm put(k, o)

1. We search for key k to locate 

the insertion node v

2. We add the new entry (k, o) at 

node v

3. while overflow(v)

if isRoot(v)

create a new empty root 

above v

v  split(v)

Let T be a (2,4) tree 
with n items

◼ Tree T has O(log n) 

height

◼ Step 1 takes O(log n)

time because we visit 
O(log n) nodes

◼ Step 2 takes O(1) time

◼ Step 3 takes O(log n)

time because each split 
takes O(1) time and we 
perform O(log n) splits

Thus, an insertion in a 
(2,4) tree takes O(log n)

time



Deletion
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We reduce deletion of an entry to the case where the item is at the node 
with leaf children

Otherwise, we replace the entry with its inorder successor (or, equivalently, 
with its inorder predecessor) and delete the latter entry

Example: to delete key 24, we replace it with 27 (inorder successor)

27   32   35

10   15   24

2   8 12 18

32   35

10   15   27

2   8 12 18



Underflow and Fusion
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Deleting an entry from a node v may cause an underflow, where 
node v becomes a 1-node with one child and no keys

To handle an underflow at node v with parent u, we consider two 
cases

Case 1: the adjacent siblings of v are 2-nodes
◼ Fusion operation: we merge v with an adjacent sibling w and move 

an entry from u to the merged node v'

◼ After a fusion, the underflow may propagate to the parent u

9  14

2  5  7 10

u

v

9

10  14

u

v'w
2  5  7



Underflow and Transfer
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To handle an underflow at node v with parent u, we consider 
two cases

Case 2: an adjacent sibling w of v is a 3-node or a 4-node

◼ Transfer operation:

1.  we move a child of w to v

2.  we move an item from u to v

3.  we move an item from w to u

◼ After a transfer, no underflow occurs

4  9

6  82

u

vw

4  8

62 9

u

vw



Analysis of Deletion
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Let T be a (2,4) tree with n items
◼ Tree T has O(log n) height

In a deletion operation
◼ We visit O(log n) nodes to locate the node from 

which to delete the entry

◼ We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

◼ Each fusion and transfer takes O(1) time

Thus, deleting an item from a (2,4) tree takes 
O(log n) time



Comparison of Map Implementations
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Find Put Erase Notes

Hash 
Table

1
expected

1
expected

1
expected

o no ordered map
methods

o simple to implement

Skip List log n
high prob.

log n
high prob.

log n
high prob.

o randomized insertion

o simple to implement

AVL and 
(2,4) 
Tree

log n
worst-case

log n
worst-case

log n
worst-case

o complex to implement


