AVL Trees and (2,4) Trees

Sections 10.2 and 10.4

6

V

AVL Tree Definition

AVL trees are balanced 44 2 An AVL Tree is a 78 17 binary search tree 88 32 50 such that for every internal node v of T, 62 48 the heights of the children of v can differ by at most 1 An example of an AVL tree where the heights are shown next to the nodes

n(2) / 3 4 (n(1)

Height of an AVL Tree

- Fact: The height of an AVL tree storing n keys is O(log n).
 Proof: Let us bound g(h): the minimum number of internal nodes of an AVL tree of height h.
- We easily see that g(1) = 1 and g(2) = 2
- For h > 2, a minimal AVL tree of height h contains the root, one AVL subtree of height h-1 and another of height h-2.
- That is, g(h) = 1 + g(h-1) + g(h-2)
- Knowing g(h-1) > g(h-2), we get g(h) > 2g(h-2). So g(h) > 2g(h-2), g(h) > 4g(h-4), g(h) > 8g(h-6), ... (by induction), g(h) > 2ⁱg(h-2i)
- Solving the base case we get: $g(h) > 2^{h/2-1}$
- ◆ Taking logarithms: log g(h) > h/2 1, or h < 2log g(h) +2
 ◆ Thus the height of an AVL tree is O(log g(h)) = O(log n)

Insertion

z is first unbalanced node encountered walking up tree from w.

y is the child of z with greater height.

x is the child of y with greater height. x might be w.

Tree Rotation

Rotation is a fundamental restructuring operation for binary search trees.

Inorder listing is the same before and after rotation.

AVL Trees

Trinode Restructuring

let (*a*, *b*, *c*) be an inorder listing of *x*, *y*, *z* perform the rotations needed to make *b* the topmost node of the three

Insertion Example, continued

Restructuring (as Single Rotations)

Restructuring (as Double Rotations)

double rotations:

Removal

Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.

10

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform restructure(x) to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

AVL Tree Performance

- ♦ a single restructure takes O(1) time
 - using a linked-structure binary tree
- find takes O(log n) time
 - height of tree is O(log n), no restructures needed
- put takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- erase takes O(log n) time
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1 key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v₁ are less than k₁
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d 1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item (k_i, o_i) of node v between the recursive traversals of the subtrees of v rooted at children v_i and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

Similar to search in a binary search tree

• A each internal node with children $v_1 v_2 \dots v_d$ and keys $k_1 k_2 \dots k_{d-1}$

• $k = k_i$ (i = 1, ..., d - 1): the search terminates successfully

- $k < k_1$: we continue the search in child v_1
- $k_{i-1} < k < k_i$ (i = 2, ..., d 1): we continue the search in child v_i
- $k > k_{d-1}$: we continue the search in child v_d

Reaching an external node terminates the search unsuccessfully
 Example: search for 30

(2,4) Trees

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search tree with the following properties
 - Node-Size Property: every internal node has at most four children
- Depth Property: all the external nodes have the same depth
 Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node

Height of a (2,4) Tree

- Theorem: A (2,4) tree storing n items has height O(log n) Proof:
 - Let *h* be the height of a (2,4) tree with *n* items
 - Since there are at least 2ⁱ items at depth i = 0, ..., h 1 and no items at depth h, we have

$$n \ge 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1$$

- Thus, $h \le \log (n + 1)$
- Searching in a (2,4) tree with n items takes $O(\log n)$ time

Insertion

- We insert a new item (k, o) at the parent v of the leaf reached by searching for k
 - We preserve the depth property but
 - We may cause an overflow (i.e., node v may become a 5-node)
- Example: inserting key 30 causes an overflow

Overflow and Split

• We handle an overflow at a 5-node v with a split operation:

- let $v_1 \dots v_5$ be the children of v and $k_1 \dots k_4$ be the keys of v
- node v is replaced nodes v' and v"
 - v' is a 3-node with keys $k_1 k_2$ and children $v_1 v_2 v_3$
 - v'' is a 2-node with key k_4 and children $v_4 v_5$
- key k_3 is inserted into the parent u of v (a new root may be created)

• The overflow may propagate to the parent node u

Analysis of Insertion

Algorithm *put*(*k*, *o*)

- 1. We search for key *k* to locate the insertion node *v*
- 2. We add the new entry (*k*, *o*) at node *v*
- 3. while *overflow*(v)
 - if isRoot(v)
 - create a new empty root above *v*
 - $v \leftarrow split(v)$

- Let T be a (2,4) tree with n items
 - Tree *T* has *O*(log *n*) height
 - Step 1 takes O(log n) time because we visit
 O(log n) nodes
 - Step 2 takes O(1) time
 - Step 3 takes O(log n) time because each split takes O(1) time and we perform O(log n) splits
- Thus, an insertion in a
 (2,4) tree takes O(log n)
 time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases
- Case 1: the adjacent siblings of v are 2-nodes
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent *u*

Underflow and Transfer

- To handle an underflow at node v with parent u, we consider two cases
- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
 - Transfer operation:
 - 1. we move a child of *w* to *v*
 - 2. we move an item from u to v
 - 3. we move an item from *w* to *u*
 - After a transfer, no underflow occurs

Analysis of Deletion

Let T be a (2,4) tree with n items Tree T has O(log n) height

In a deletion operation

- We visit O(log n) nodes to locate the node from which to delete the entry
- We handle an underflow with a series of O(log n) fusions, followed by at most one transfer
- Each fusion and transfer takes O(1) time
- Thus, deleting an item from a (2,4) tree takes
 O(log n) time

Comparison of Map Implementations

Skip List log n high prob. log n high prob. log n high prob. o randomized insertion o simple to implement		Find	Put	Erase	Notes
Skip List high prob. high prob. high prob. high prob. o simple to implement		1 expected	1 expected	1 expected	
AVI and	Skip List	$\mathbf{\tilde{c}}$	\smile	\mathbf{U}	 randomized insertion simple to implement
1 $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ 1		U	Ŭ	Ŭ	 complex to implement