
Dictionaries 1

Dictionaries and
Binary Search Trees

© 2010 Goodrich, Tamassia

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

Sections 9.5 – 10.1

Maps 2

Dictionary

❑ The dictionary ADT models a searchable
collection of key-element entries

❑ The main operations of a dictionary are
searching, inserting, and deleting items

❑ Multiple items with the same key are allowed

❑ Applications:
◼ word-definition pairs

◼ credit card authorizations

◼ DNS mapping of host names (e.g.,
datastructures.net) to internet IP addresses (e.g.,
128.148.34.101)

© 2010 Goodrich, Tamassia

Entry ADT

❑ An entry stores a key-value pair (k,v)

❑ Methods:

◼ key(): return the associated key

◼ value(): return the associated value

◼ setKey(k): set the key to k

◼ setValue(v): set the value to v

© 2010 Goodrich, Tamassia Dictionaries 3

Dictionaries 4

Dictionary ADT

❑ Dictionary ADT methods:

◼ find(k): if there is an entry with key k, returns an iterator to it,

else returns the special iterator end

◼ findAll(k): returns iterators b and e such that all entries with

key k are in the iterator range [b, e) starting at b and ending

just prior to e

◼ put(k, o): inserts and returns an iterator to it

◼ erase(k): remove an entry with key k

◼ begin(), end(): return iterators to the beginning and end of

the dictionary

◼ size(), empty()

© 2010 Goodrich, Tamassia

Dictionaries 5

Example
Operation Output Dictionary
put(5,A) (5,A) (5,A)
put(7,B) (7,B) (5,A),(7,B)
put(2,C) (2,C) (5,A),(7,B),(2,C)
put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
find(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
find(4) end (5,A),(7,B),(2,C),(8,D),(2,E)
find(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
findAll(2) {(2,C),(2,E)} (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
erase(5) — (7,B),(2,C),(8,D),(2,E)
find(5) end (7,B),(2,C),(8,D),(2,E)

© 2010 Goodrich, Tamassia

Dictionaries 6

A List-Based Dictionary

❑ A log file or audit trail is a dictionary implemented by means of
an unsorted sequence
◼ We store the items of the dictionary in a sequence (based on a

doubly-linked list or array), in arbitrary order

❑ Performance:
◼ put takes O(1) time since we can insert the new item at the

beginning or at the end of the sequence

◼ find and erase take O(n) time since in the worst case (the item is
not found) we traverse the entire sequence to look for an item with
the given key

❑ The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)

© 2010 Goodrich, Tamassia

Dictionaries 7

The find, put, erase Algorithms
Algorithm find(k)

for each p in [S.begin(), S.end()) do
if p.key() = k then

return p

Algorithm put(k, v)
Create a new entry e = (k, v)
p = S.insertBack(e) {S is unordered}
return p

Algorithm erase(k):
for each p in [S.begin(), S.end()) do

if p.key() = k then
S.erase(p)

© 2010 Goodrich, Tamassia

Dictionaries 8

Hash Table Implementation

❑ We can also create a hash-table
dictionary implementation.

❑ If we use separate chaining to handle
collisions, then each operation can be
delegated to a list-based dictionary
stored at each hash table cell.

© 2010 Goodrich, Tamassia

Dictionaries 9

Search Table
❑ A search table is a dictionary implemented by means of a sorted

array
◼ We store the items of the dictionary in an array-based sequence,

sorted by key

◼ We use an external comparator for the keys

❑ Performance:
◼ find takes O(log n) time, using binary search

◼ put takes O(n) time since in the worst case we have to shift n/2
items to make room for the new item

◼ erase takes O(n) time since in the worst case we have to shift n/2
items to compact the items after the removal

❑ A search table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

© 2010 Goodrich, Tamassia

Dictionaries 10

Binary Search
❑ Binary search performs operation find(k) on a dictionary

implemented by means of an array-based sequence, sorted by key

◼ at each step, the number of candidate items is halved

◼ terminates after a logarithmic number of steps

❑ Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

© 2010 Goodrich, Tamassia

Binary Search Trees 11

Ordered Maps

❑ Keys come from a total order

❑ Extension of Map ADT

❑ New functions are (each returns an iterator to an entry):

◼ firstEntry(): smallest key in the map

◼ lastEntry(): largest key in the map

◼ floorEntry(k): largest key  k

◼ ceilingEntry(k): smallest key  k

◼ lowerEntry(k): largest key < k

◼ higherEntry(k): smallest key > k

◼ All return end if the map is empty
© 2019 Shermer

Binary Search Trees 12

Binary Search
❑ Binary search can perform operations get, floorEntry, ceilingEntry,

lowerEntry, and higherEntry on an ordered map implemented by
means of an array-based sequence, sorted by key.

◼ terminates after O(log n) steps

❑ Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

© 2010 Goodrich, Tamassia

Binary Search Trees 13

Binary Search Trees
❑ A binary search tree is a

binary tree storing keys
(or key-value entries) at
its internal nodes and
satisfying the following
property:
◼ Let u, v, and w be three

nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u)  key(v)  key(w)

❑ External nodes do not
store items

❑ An inorder traversal of a
binary search trees
visits the keys in
increasing order

6

92

41 8

© 2010 Goodrich, Tamassia

Binary Search Trees 14

Search

❑ To search for a key k, we

trace a downward path
starting at the root

❑ The next node visited
depends on the comparison
of k with the key of the

current node

❑ If we reach a leaf, the key
is not found

❑ Example: get(4):

◼ Call TreeSearch(4,root)

❑ The algorithms for
floorEntry and ceilingEntry
are similar

Algorithm TreeSearch(k, v)

if v.isExternal ()

return v

if k < v.key()

return TreeSearch(k, v.left())

else if k = v.key()

return v

else { k > v.key() }

return TreeSearch(k, v.right())

6

92

41 8

<

>

=

© 2010 Goodrich, Tamassia

Binary Search Trees 15

Insertion

❑ To perform operation
put(k, o), we search for key
k (using TreeSearch)

❑ Assume k is not already in
the tree, and let w be the
leaf reached by the search

❑ We insert k at node w and
expand w into an internal
node

❑ Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

© 2010 Goodrich, Tamassia

Binary Search Trees 16

Deletion

❑ To perform operation
erase(k), we search for key
k

❑ Assume key k is in the tree,
and let let v be the node
storing k

❑ If node v has a leaf child w,
we remove v and w from the

tree with operation
removeExternal(w), which
removes w and its parent

❑ Example: remove 4

6

92

41 8

5

v

w

6

92

51 8

<

>

© 2010 Goodrich, Tamassia

Binary Search Trees 17

Deletion (cont.)

❑ We consider the case where
the key k to be removed is
stored at a node v whose

children are both internal

◼ we find the internal node w

that follows v in an inorder

traversal

◼ we copy key(w) into node v

◼ we remove node w and its
left child z (which must be a

leaf) by means of operation
removeExternal(z)

❑ Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

© 2010 Goodrich, Tamassia

Binary Search Trees 18

Performance
❑ Consider an ordered

map with n items

implemented by means
of a binary search tree
of height h

◼ the space used is O(n)

◼ methods get, floorEntry,
ceilingEntry, put and
erase take O(h) time

❑ The height h is O(n) in

the worst case and
O(log n) in the best case

© 2010 Goodrich, Tamassia

