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Dictionary

❑ The dictionary ADT models a searchable 
collection of key-element entries

❑ The main operations of a dictionary are 
searching, inserting, and deleting items

❑ Multiple items with the same key are allowed

❑ Applications:
◼ word-definition pairs

◼ credit card authorizations

◼ DNS mapping of host names (e.g., 
datastructures.net) to internet IP addresses (e.g., 
128.148.34.101)
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Entry ADT

❑ An entry stores a key-value pair (k,v)

❑ Methods:

◼ key(): return the associated key

◼ value(): return the associated value

◼ setKey(k): set the key to k

◼ setValue(v): set the value to v 
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Dictionary ADT

❑ Dictionary ADT methods:

◼ find(k): if there is an entry with key k, returns an iterator to it, 

else returns the special iterator end

◼ findAll(k): returns iterators b and e such that all entries with 

key k are in the iterator range [b, e) starting at b and ending 

just prior to e

◼ put(k, o): inserts and returns an iterator to it

◼ erase(k): remove an entry with key k

◼ begin(), end(): return iterators to the beginning and end of 

the dictionary

◼ size(), empty()
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Example
Operation Output Dictionary
put(5,A) (5,A) (5,A)
put(7,B) (7,B) (5,A),(7,B)
put(2,C) (2,C) (5,A),(7,B),(2,C)
put(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
put(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
find(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
find(4) end (5,A),(7,B),(2,C),(8,D),(2,E)
find(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
findAll(2) {(2,C),(2,E)} (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
erase(5) — (7,B),(2,C),(8,D),(2,E)
find(5) end (7,B),(2,C),(8,D),(2,E)
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A List-Based Dictionary

❑ A log file or audit trail is a dictionary implemented by means of 
an unsorted sequence
◼ We store the items of the dictionary in a sequence (based on a 

doubly-linked list or array), in arbitrary order

❑ Performance:
◼ put takes O(1) time since we can insert the new item at the 

beginning or at the end of the sequence

◼ find and erase take O(n) time since in the worst case (the item is 
not found) we traverse the entire sequence to look for an item with 
the given key

❑ The log file is effective only for dictionaries of small size or for 
dictionaries on which insertions are the most common 
operations, while searches and removals are rarely performed 
(e.g., historical record of logins to a workstation)
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The find, put, erase Algorithms
Algorithm find(k)

for each p in [S.begin(), S.end()) do
if p.key() = k  then

return p

Algorithm put(k, v)
Create a new entry e = (k, v)
p = S.insertBack(e) {S is unordered}
return p

Algorithm erase(k):
for each p in [S.begin(), S.end()) do

if p.key() = k then
S.erase(p)
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Hash Table Implementation

❑ We can also create a hash-table 
dictionary implementation.

❑ If we use separate chaining to handle 
collisions, then each operation can be 
delegated to a list-based dictionary 
stored at each hash table cell.

© 2010 Goodrich, Tamassia



Dictionaries 9

Search Table
❑ A search table is a dictionary implemented by means of a sorted 

array
◼ We store the items of the dictionary in an array-based sequence, 

sorted by key

◼ We use an external comparator for the keys

❑ Performance:
◼ find takes O(log n) time, using binary search

◼ put takes O(n) time since in the worst case we have to shift n/2
items to make room for the new item

◼ erase takes O(n) time since in the worst case we have to shift n/2
items to compact the items after the removal

❑ A search table is effective only for dictionaries of small size or 
for dictionaries on which searches are the most common 
operations, while insertions and removals are rarely performed 
(e.g., credit card authorizations)
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Binary Search
❑ Binary search performs operation find(k) on a dictionary 

implemented by means of an array-based sequence, sorted by key

◼ at each step, the number of candidate items is halved

◼ terminates after a logarithmic number of steps

❑ Example: find(7)
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Ordered Maps

❑ Keys come from a total order

❑ Extension of Map ADT

❑ New functions are (each returns an iterator to an entry):

◼ firstEntry(): smallest key in the map

◼ lastEntry(): largest key in the map

◼ floorEntry(k): largest key  k

◼ ceilingEntry(k): smallest key  k

◼ lowerEntry(k): largest key < k

◼ higherEntry(k): smallest key > k

◼ All return end if the map is empty
© 2019 Shermer
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Binary Search
❑ Binary search can perform operations get, floorEntry, ceilingEntry, 

lowerEntry, and higherEntry on an ordered map implemented by 
means of an array-based sequence, sorted by key.

◼ terminates after O(log n) steps

❑ Example: find(7)
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Binary Search Trees
❑ A binary search tree is a 

binary tree storing keys 
(or key-value entries) at 
its internal nodes and 
satisfying the following 
property:
◼ Let u, v, and w be three 

nodes such that u is in 
the left subtree of v and 
w is in the right subtree 
of v. We have 
key(u)  key(v)  key(w)

❑ External nodes do not 
store items

❑ An inorder traversal of a 
binary search trees 
visits the keys in 
increasing order
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Search

❑ To search for a key k, we 

trace a downward path 
starting at the root

❑ The next node visited 
depends on the comparison 
of k with the key of the 

current node

❑ If we reach a leaf, the key 
is not found

❑ Example: get(4):

◼ Call TreeSearch(4,root)

❑ The algorithms for 
floorEntry and ceilingEntry 
are similar

Algorithm TreeSearch(k, v)

if v.isExternal ()

return v

if k < v.key()

return TreeSearch(k, v.left())

else if k = v.key()

return v

else { k > v.key() }

return TreeSearch(k, v.right())
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Insertion

❑ To perform operation 
put(k, o), we search for key 
k (using TreeSearch)

❑ Assume k is not already in 
the tree, and let w be the 
leaf reached by the search

❑ We insert k at node w and 
expand w into an internal 
node

❑ Example: insert 5
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Deletion

❑ To perform operation 
erase(k), we search for key 
k

❑ Assume key k is in the tree, 
and let let v be the node 
storing k

❑ If node v has a leaf child w, 
we remove v and w from the 

tree with operation 
removeExternal(w), which 
removes w and its parent

❑ Example: remove 4
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Deletion (cont.)

❑ We consider the case where 
the key k to be removed is 
stored at a node v whose 

children are both internal

◼ we find the internal node w 

that follows v in an inorder 

traversal

◼ we copy key(w) into node v

◼ we remove node w and its 
left child z (which must be a 

leaf) by means of operation 
removeExternal(z)

❑ Example: remove 3
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Performance
❑ Consider an ordered 

map with n items 

implemented by means 
of a binary search tree 
of height h

◼ the space used is O(n)

◼ methods get, floorEntry, 
ceilingEntry, put and 
erase take O(h) time

❑ The height h is O(n) in 

the worst case and 
O(log n) in the best case

© 2010 Goodrich, Tamassia


