
Ordered Maps and Skip Lists 1

Ordered Maps and Skip Lists

+-

S0

S1

S2

S3

+- 10 362315

+- 15

+- 2315

© 2019 Shermer, based on 
Goodrich, Tamassia, Mount

Sections 9.3 – 9.4



Ordered Maps 2

Ordered Maps
❑ Ordered maps function as normal maps but also 

provides access to the order relationship on keys.

❑ They allow one to look up elements in the map based 
on the ordering.  For example, one can find the 
element with the smallest key greater than some 
given key.

❑ The ordering relationship is often defined by a 
comparator for the keys, which can be provided 
when the map is created.

❑ For dealing with queries for nonexistent elements, 
there is a special sentinel entry called end.

© 2019 Shermer



Ordered Maps 3

The Ordered Map ADT
❑ Has all members that the Map ADT has, plus:

◼ firstEntry():  Return an iterator to the entry with the smallest key 
value; if the map is empty, it returns end.

◼ lastEntry():  Return an iterator to the entry with the largest key 
value; if the map is empty, it returns end.

◼ ceilingEntry(k): Return an iterator to the entry with the least key 
value greater than or equal to k; if there is no such entry, it returns 
end.

◼ floorEntry(k): Return an iterator to the entry with the greatest key 
value less than or equal to k; if there is no such entry, it returns 
end.

◼ higherEntry(k): Return an iterator the entry with the least key 
value greater than k; if there is no such entry, it returns end.

◼ lowerEntry(k): Return an iterator to the entry with the greatest key 
value less than k; if there is no such entry, it returns end.

© 2019 Shermer



Ordered Maps 4

Implementing Ordered Map
❑ Consider storing the Ordered Map’s entries as an Array 

List where the entries are in sorted order from smallest to 
largest.  This is called an ordered search table.

*depends on load factor

© 2019 Shermer

find(k) put(k,v) erase(k) erase(p)

hash table O(1) expected*,
O(n) worst

O(1) exp.*
O(n)

O(1) exp.*
O(n)

O(1)

unordered
linked list

O(n) O(1) O(n) O(1)

ordered 
search table

O(log n) O(n) O(n) O(n)



Ordered Maps 5

Binary Search
❑ find(k) in an ordered search table is implemented by 

binary search.

❑ Example: search for 30 in the search table below.

© 2019 Shermer

0 1 2 3 4 5 6 7 8 9 10 11 12

1612 24 25 27 30 35 42 49 50 52 61

low highmiddle =
(low + high) /2

Compare 30 to A[middle]:  30 < 35, so move high to middle 

0 1 2 3 4 5 6 7 8 9 10 11 12

1612 24 25 27 30 35 42 49 50 52 61

low highmiddle =
(low + high) /2



Ordered Maps 6

Binary Search

© 2019 Shermer

Compare 30 to A[middle]:  30 ≥ 25, so move low to middle + 1

0 1 2 3 4 5 6 7 8 9 10 11 12

1612 24 25 27 30 35 42 49 50 52 61

low high

middle =
(low + high) /2

Compare 30 to A[middle]:  30 = 30, so target is found.



Skip Lists 7

Skip Lists
❑ A skip list for a set S of distinct (key, element) items is a series of 

lists S0, S1 , … , Sh such that
◼ Each list Si contains the special keys + and -

◼ List S0 contains the keys of S in nondecreasing order 

◼ Each list is a subsequence of the previous one, i.e.,
S0  S1  …  Sh

◼ List Sh contains only the two special keys

❑ We can use a skip list to implement the Ordered Map ADT

56 64 78 +31 34 44- 12 23 26

+-

+31-

64 +31 34- 23

S0

S1

S2

S3

© 2010 Goodrich, Tamassia



Skip Lists 8

Search
❑ We search for a key x in a a skip list as follows:

◼ We start at the first position of the top list 

◼ At the current position p, we compare x with y  key(next(p))

x = y: we return element(next(p))

x > y: we “scan forward” 

x < y: we “drop down”

◼ If we try to drop down past the bottom list, we return null

❑ Example: search for 78

+-

S0

S1

S2

S3

+31-

64 +31 34- 23

56 64 78 +31 34 44- 12 23 26

© 2010 Goodrich, Tamassia

scan forward

drop down



Skip Lists 9

Randomized Algorithms
❑ A randomized algorithm

performs coin tosses (i.e., 
uses random bits) to control 
its execution

❑ It contains statements of the 
type

b  random()

if b = 0

do A …

else { b = 1}

do  B … 

❑ Its running time depends on 
the outcomes of the coin 
tosses

❑ We analyze the expected 
running time of a 
randomized algorithm under 
the following assumptions
◼ the coins are unbiased, and 

◼ the coin tosses are 
independent

❑ The worst-case running time 
of a randomized algorithm is 
often large but has very low 
probability (e.g., it occurs 
when all the coin tosses give 
“heads”)

❑ We use a randomized 
algorithm to insert items into 
a skip list

© 2010 Goodrich, Tamassia



Skip Lists 10

❑ To insert an entry (x, o) into a skip list, we use a randomized 
algorithm:
◼ We repeatedly toss a coin until we get tails, and we denote with i 

the number of times the coin came up heads

◼ If i  h, we add to the skip list new lists Sh+1, … , Si +1, each 
containing only the two special keys

◼ We search for x in the skip list and find the positions p0, p1 , …, pi 

of the items with largest key less than x in each list S0, S1, … , Si

◼ For j  0, …, i, we insert item (x, o) into list Sj after position pj

❑ Example: insert key 15, with i = 2

Insertion

+- 10 36

+-

23

23 +-

S0

S1

S2

+-

S0

S1

S2

S3

+- 10 362315

+- 15

+- 2315
p0

p1

p2

© 2010 Goodrich, Tamassia



Skip Lists 11

Deletion

❑ To remove an entry with key x from a skip list, we proceed as 

follows:

◼ We search for x in the skip list and find the positions p0, p1 , …, pi 

of the items with key x, where position pj is in list Sj

◼ We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

◼ We remove all but one list containing only the two special keys

❑ Example: remove key 34

- +4512

- +

23

23- +

S0

S1

S2

- +

S0

S1

S2

S3

- +4512 23 34

- +34

- +23 34
p0

p1

p2

© 2010 Goodrich, Tamassia



Skip Lists 12

Implementation

❑ We can implement a skip list 
with  quad-nodes

❑ A quad-node stores:

◼ entry

◼ link to the node prev

◼ link to the node next

◼ link to the node below

◼ link to the node above

❑ Also, we define special keys 
PLUS_INF and MINUS_INF, 
and we modify the key 
comparator to handle them  

x

quad-node

© 2010 Goodrich, Tamassia



Skip Lists 13

Space Usage

❑ The space used by a skip list 
depends on the random bits 
used by each invocation of the 
insertion algorithm

❑ We use the following two basic 
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when 
flipping a coin is 1/2i

Fact 2: If each of n entries is 
present in a set with 
probability p, the expected size 
of the set is np

❑ Consider a skip list with n
entries
◼ By Fact 1, we insert an entry 

in list Si with probability 1/2i

◼ By Fact 2, the expected size 
of list Si is n/2i

❑ The expected number of 
nodes used by the skip list is

nn
n h

i
i

h

i
i

2
2

1

2 00

<= 
==

Thus, the expected space 
usage of a skip list with n
items is O(n)

© 2010 Goodrich, Tamassia



Skip Lists 14

Height

❑ The running time of the 
search and insertion 
algorithms is affected by the 
height h of the skip list

❑ We show that with high 
probability, a skip list with n
items has height O(log n)

❑ We use the following 
additional probabilistic fact:

Fact 3: If each of n events has 
probability p, the probability 

that at least one event 
occurs is at most np

❑ Consider a skip list with n
entires
◼ By Fact 1, we insert an entry 

in list Si with probability 1/2i

◼ By Fact 3, the probability that 
list Si has at least one item is 
at most n/2i

❑ By picking i = 3log n, we have 
that the probability that S3log n

has at least one entry is
at most

n/23log n = n/n3 = 1/n2

❑ Thus a skip list with n entries 
has height at most 3log n with 
probability at least 1 - 1/n2

© 2010 Goodrich, Tamassia



Skip Lists 15

Search and Update Times
❑ The search time in a skip list 

is proportional to
◼ the number of drop-down 

steps, plus

◼ the number of scan-forward 
steps

❑ The drop-down steps are 
bounded by the height of the 
skip list and thus are O(log n) 
with high probability

❑ To analyze the scan-forward 
steps, we use yet another 
probabilistic fact:
Fact 4: The expected number of 

coin tosses required in order 
to get heads is 2

❑ When we scan forward in a 
list, the destination key does 
not belong to a higher list
◼ A scan-forward step is 

associated with a former coin 
toss that gave tails

❑ By Fact 4, in each list the 
expected number of scan-
forward steps is 1

❑ Thus, the expected number of 
scan-forward steps is  O(log n)

❑ We conclude that a search in a 
skip list takes O(log n) 
expected time

❑ The analysis of insertion and 
deletion gives similar results

© 2019 Shermer,  Goodrich, 
Tamassia



Skip Lists 16

Implementing Ordered Map
❑ The (unordered) map functions are implemented as we’ve seen.

❑ firstEntry() and lastEntry() can be found in O(1) time from the 
sentinels of S0.

❑ The other OrderedMap functions are easily implemented by starting 
with a search for the given key k.

❑ For example, ceilingEntry(50) on our sample skip list searches for 
50.  It ends the search at the 44 node on S0 with a not found
result; the ceiling entry (56) is the next node from the search’s end.

+-

S0

S1

S2

S3

+31-

64 +31 34- 23

56 64 78 +31 34 44- 12 23 26

© 2019 Shermer



Skip Lists 17

Summary

❑ A skip list is a data 
structure for ordered 
maps that uses a 
randomized insertion 
algorithm

❑ In a skip list with n
entries 
◼ The expected space used 

is O(n)

◼ The expected search, 
insertion and deletion 
time is O(log n)

❑ Using a more complex 
probabilistic analysis, 
one can show that 
these performance 
bounds also hold with 
high probability

❑ Skip lists are fast and 
simple to implement in 
practice

© 2010 Goodrich, Tamassia


