Ordered Maps and Skip Lists

Sections 9.3 — 9.4

S;[=0 +00
S, =0 15 +00
S [=0 15 23 +00
S, oo 10 {15 {23 {36 -+

© 2019 Shermer, based on
Goodrich, Tamassia, Mount Ordered Maps and Skip Lists

AN

Ordered Maps

N

a Ordered maps function as normal maps but also
provides access to the order relationship on keys.

a They allow one to look up elements in the map based
on the ordering. For example, one can find the
element with the smallest key greater than some
given key.

a The ordering relationship is often defined by a
comparator for the keys, which can be provided
when the map is created.

a For dealing with queries for nonexistent elements,
there is a special sentinel entry called end.

© 2019 Shermer Ordered Maps 2

N

The Ordered Map ADT

o Has all members that the Map ADT has, plus:

firstEntry(): Return an iterator to the entry with the smallest key
value; if the map is empty, it returns end.

lastEntry(): Return an iterator to the entry with the largest key
value; if the map is empty, it returns end.

ceilingEntry(k): Return an iterator to the entry with the least key
value greater than or equal to k; if there is no such entry, it returns
end.

floorEntry(k): Return an iterator to the entry with the greatest key
value less than or equal to k; if there is no such entry, it returns
end.

higherEntry(k): Return an iterator the entry with the least key
value greater than k; if there is no such entry, it returns end.

lowerEntry(k): Return an iterator to the entry with the greatest key
value less than k; if there is no such entry, it returns end.

© 2019 Shermer Ordered Maps 3

Implementing Ordered Map

N

a Consider storing the Ordered Map’s entries as an Array
List where the entries are in sorted order from smallest to
largest. This is called an ordered search table.

find(k) put(k,v) erase(k) erase(p)
hash table O(1) expected*, O(1) exp.* O(1) exp.* 0O(1)
O(n) worst O(n) O(n)
unordered O(n) O(1) O(n) O(1)
linked list
ordered O(log n) O(n) O(n) O(n)

search table

*depends on load factor

© 2019 Shermer Ordered Maps

Binary Search

N

a find(k) in an ordered search table is implemented by
binary search.

o Example: search for 30 in the search table below.

12 16 24 25 | 27 | 30 35 42 49 50 52 61
0 1 2 3 4 5 6 7 8 9 10 11
Tlow T middle =
(low + high) /2

Compare 30 to A[middle]: 30 < 35, so move high to middle

12 16 | 24 | 25 | 27 | 30 | 35 | 42 49 50 52 61
0 1 2 3 4 5 6 7 8 9 10 11
T|OW T middle = Thlgh

© 2019 Shermer

(low + high) /2

Ordered Maps

Thigh

12

N

Binary Search

Compare 30 to A[middle]: 30 = 25, so move low to middle + 1

122 | 16 | 24 | 25 | 27 | 30 | 35| 42 | 49 | 50 | 52

61

0 1 2 3 4 5 6 7 8 9 10

© 2019 Shermer

Tlow T Thigh

middle =
(low + high) /2

Compare 30 to A[middle]: 30 = 30, so target is found.

Ordered Maps

11

12

Skip Lists

N

o A skip list for a set S of distinct (key, element) items is a series of
lists S;, S;, ..., S}, such that

= Each list S; contains the special keys +o0 and —w
m List S, contains the keys of S in nhondecreasing order

= Each list is a subsequence of the previous one, i.e.,
S50 ...295,

m List S, contains only the two special keys
o We can use a skip list to implement the Ordered Map ADT

S; Ex o
SZ —00 31 +00
S, E= 23 3134 64 o0
S, Exl—{12}{23}26 31 {3444 56 {64 {78 50

© 2010 Goodrich, Tamassia Skip Lists 7

N

S

Sz —00

Sy
So

© 2010 Goodrich, Tamassia

Search

o We search for a key x in a a skip list as follows:
= We start at the first position of the top list
= At the current position p, we compare x with y <— key(next(p))

X =Yy: we return element(next(p))
X >y: we “scan forward”
X <y: we “drop down”
= If we try to drop down past the bottom list, we return null
o Example: search for 78

—00
scan forwa

rm_l

31
drop down
—00 23 31 34
—0 12 23 26 31 34 44 56

Skip Lists

Randomized Algorithms

p
4
o A randomized algorithm o We analyze the expected
performs coin tosses (i.e., running time of a
uses random bits) to control randomized algorithm under
its execution the following assumptions
o It contains statements of the = the coins are unbiased, and
type = the coin tosses are
b < random() independent
if b=0 o The worst-case running time
do A of a randomized algorithm is
else {b=1} often large but has very low
do B probability (e.g., it occurs
U when all the coin tosses give
o Its running time depends on “heads")
the outcomes of the coin .
tosses o We use a randomized

algorithm to insert items into
a skip list

© 2010 Goodrich, Tamassia Skip Lists 9

Insertion

o To insert an entry (x, o) into a skip list, we use a randomized
algorithm:
s We repeatedly toss a coin until we get tails, and we denote with i
the number of times the coin came up heads

= Ifi>h, we add to the skip list new lists S, ,,, ..., S;.,;, each
containing only the two special keys

s We search for x in the skip list and find the positions p,, p;, ..., p;
of the items with largest key less than x in each list S,, S, ..., S;

N

= Forj<«0,...,1i, weinsert item (x, o) into list S; after position p,
o Example: insert key 15, with i =2
83 —00 +00
P2
S, Ed] | S, =0 15 +00
v p]_
S, Exl 23] G0 |—:> S, [Ee0 15 {23 +o0
' Po
Sol=x) 36]+ Sol=oof— 10 —{ 15 —{ 23 [36 —{+o0
© 2010 Goodrich, Tamassia Skip Lists 10

Deletion

o To remove an entry with key x from a skip list, we proceed as
follows:

= We search for x in the skip list and find the positions p,, p;, ..., p;
of the items with key x, where position p; is in list S;

= We remove positions p,, p;, ..., p; from the lists S,, S, ..., S;
= We remove all but one list containing only the two special keys
o Example: remove key 34

N

S3 k= oo
-
Sz =0 |_34_| 400 SZ —00 400

v pl

S, [E0 23 HB4a——+o0 |—:> S, [Ex 23 +o0
4 Po

S, oo 22 {23 34} 45 5 So [=eo—12 {23 |—{ 45 —{+o0

© 2010 Goodrich, Tamassia Skip Lists 11

Implementation

N

o We can implement a skip list
with quad-nodes
o A quad-node stores:
= entry
= link to the node prev
= link to the node next

quad-node

= link to the node below)
= link to the node above

o Also, we define special keys
PLUS_INF and MINUS_INF,
and we modify the key
comparator to handle them

© 2010 Goodrich, Tamassia Skip Lists

12

Space Usage

N

o The space used by a skip list ggprisg:sler 2-SKIp-list-with.n
depends on the random bits

: , m By Fact 1, we insert an entry
_used I_Dy each Invocation of the in list S; with probability 1/2!
insertion algorithm

. . By Fact 2, the expected size
o We use the following two basic ; O]Y list S. is n/2! g

probabilistic facts:

Fact 1: The probability of getting i
consecutive heads when
flipping a coin is 1/2

Fact 2: If each of n entries is hn h 1
present in a set with _Z_i i ”Z; <2n
probability p, the expected size 1=0 =
of the set is np # Thus, the expected space

usage of a skip list with n
items is O(n)

o The expected number of
nodes used by the skip list is

© 2010 Goodrich, Tamassia Skip Lists 13

Height

N

a The running time of the
search and insertion

height h of the skip list
o We show that with high

o We use the following

algorithms is affected by the

probability, a skip list with n
items has height O(log n)

additional probabilistic fact:

Fact 3: If each of n events has
probability p, the probability

that at least one event

occurs is at most np

© 2010 Goodrich, Tamassia

Skip Lists

Consider a skip list with n
entires
= By Fact 1, we insert an entry
in list S; with probability 1/2'

= By Fact 3, the probability that
list S; has at least one item is
at most n/2

By picking i = 3log n, we have
that the probability that S, ,
has at least one entry is
at most

n/28109n = n/nd = 1/n?
Thus a skip list with n entries
has height at most 3log n with
probability at least 1 — 1/n?

14

Search and Update Times

p
\J
o The search time in a skip list o When we scan forward in a
is proportional to list, the destination key does
= the number of drop-down not belong to a higher list
steps, plus = A scan-forward step is
= the number of scan-forward associated with a former coin
steps toss that gave tails
o The drop-down steps are o By Fact 4, in each list the
bounded by the height of the expected number of scan-
skip list and thus are O(log n) forward steps is 1
with high probability a Thus, the expected number of
o To analyze the scan-forward scan-forward steps is O(log n)
steps, we use yet another a We conclude that a search in a
probabilistic fact: skip list takes O(log n)
Fact 4: The expected number of expected time

coin tosses required inorder , The analysis of insertion and

to get heads is 2 deletion gives similar results
© 2019 Shermer, Goodrich,
Tamassia Skip Lists 15

N

Implementing Ordered Map

a The (unordered) map functions are implemented as we've seen.

o firstEntry() and lastEntry() can be found in O(1) time from the
sentinels of S,

o The other OrderedMap functions are easily implemented by starting
with a search for the given key k.

o For example, ceilingEntry(50) on our sample skip list searches for
50. It ends the search at the 44 node on S, with a not found

result; the ceiling entry (56) is the next node from the search’s end.

Sz —00

S, =

23

(o]
B =
3134 [64] o0

SO —00

12

23

26

31 - 64 78 +00

© 2019 Shermer

Skip Lists 16

Summary

a A skip list is a data a Using a more complex
structure for ordered probabilistic analysis,
maps that uses a one can show that
randomized insertion these performance
algorithm bounds also hold with

o In a skip list with n high probability
entries a Skip lists are fast and

= The expected space used simple to implement in
s O(n) practice

= The expected search,
insertion and deletion
time is O(log n)

© 2010 Goodrich, Tamassia Skip Lists 17

