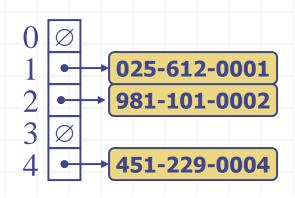
Hash Tables

Section 9.2



Recall the Map ADT

- find(k): if the map M has an entry with key k, return its associated value; else, return end.
- put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- erase(k): if the map M has an entry with key k, remove it from M. Otherwise give an error.
- erase(p): Remove from M the entry referenced by the iterator p. If p is end, or is not in the map, give an error.
- begin(), end(): return iterators to beginning and end of M

Hash Functions and Hash Tables

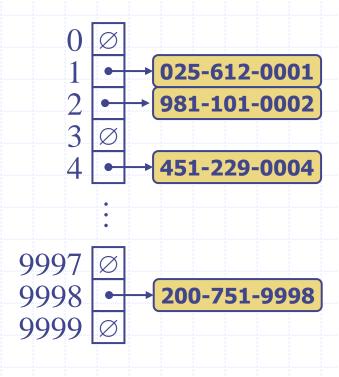
- □ A hash function h maps keys of a given type to integers in a fixed interval [0, N-1]
- Example:

 $h(x) = x \mod N$ is a hash function for integer keys

- \Box The integer h(x) is called the hash value of key x
- A hash table for a given key type consists of
 - Hash function h
 - Array (called table) of size N
- □ When implementing a map with a hash table, the goal is to store item (k, o) at index i = h(k)

Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a ten-digit positive integer
- Our hash table uses an array of size N = 10,000 and the hash function
 h(x) = last four digits of x



Hash Functions

A hash function is usually specified as the composition of two functions:

Hash code:

 h_1 : keys \rightarrow integers

Compression function:

 h_2 : integers $\rightarrow [0, N-1]$

 The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{h}_2(\boldsymbol{h}_1(\boldsymbol{x}))$$

The goal of the hash function is to "disperse" the keys in an apparently random way

Hash Codes

Memory address:

- We reinterpret the memory address of the key object as an integer
- Good in general, except for numeric and string keys

Integer cast:

- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in C++)

Component sum:

- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys
 of fixed length greater
 than or equal to the
 number of bits of the
 integer type (e.g., long
 and double in C++)

Hash Codes (cont.)

Polynomial accumulation:

 We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)

$$a_0 a_1 \dots a_{n-1}$$

We evaluate the polynomial

$$p(z) = a_0 + a_1 z + a_2 z^2 + ...$$

... $+ a_{n-1} z^{n-1}$

at a fixed value z, ignoring overflows

Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words)

- Polynomial p(z) can be evaluated in O(n) time using Horner's rule:
 - The following polynomials are successively computed, each from the previous one in O(1) time

$$p_0(z) = a_{n-1}$$

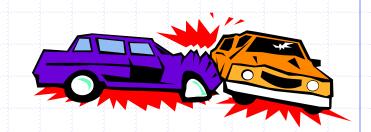
 $p_i(z) = a_{n-i-1} + zp_{i-1}(z)$
 $(i = 1, 2, ..., n-1)$

Compression Functions

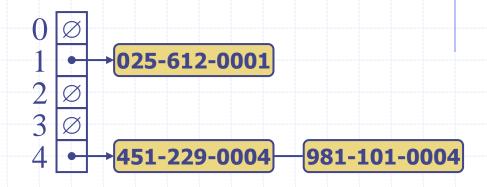
Division:

- $\bullet h_2(y) = y \bmod N$
- The size N of the hash table is usually chosen to be a prime
- The reason has to do with number theory and is beyond the scope of this course

- Multiply, Add and Divide (MAD):
 - $\bullet h_2(y) = (ay + b) \bmod N$
 - a and b are nonnegative integers such that $a \mod N \neq 0$
 - Otherwise, every integer would map to the same value b



- Collisions occur when different elements are mapped to the same cell
- Separate Chaining: let
 each cell in the table
 point to a linked list of
 entries that map there



 Separate chaining is simple, but requires additional memory outside the table

Map with Separate Chaining

Delegate operations to a list-based map at each cell:

```
Algorithm find(k): return A[h(k)].find(k)
```

```
Algorithm put(k,v):

t = A[h(k)].put(k,v)

if t = null then

n = n + 1

return t
```

```
Algorithm erase(k):

t = A[h(k)].erase(k)

n = n - 1

return t
```

{k is a new key}

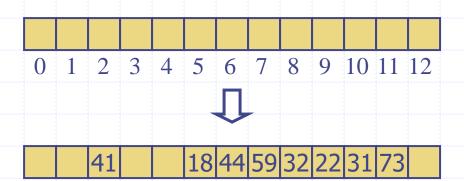
{could give error}

Linear Probing

- Open addressing: the colliding item is placed in a different cell of the table
- Linear probing: handles
 collisions by placing the
 colliding item in the next
 (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer sequence of probes

Example:

- $h(x) = x \mod 13$
- Insert keys 18, 41,22, 44, 59, 32, 31,73, in this order



5 6 7 8 9 10 11 12

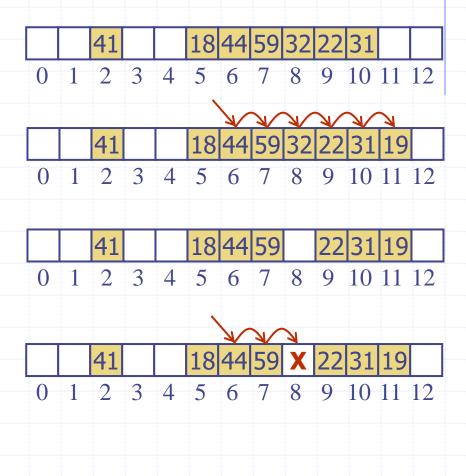
Search with Linear Probing

- Consider a hash table A that uses linear probing
- \Box find(k)
 - We start at cell h(k)
 - We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

```
Algorithm find(k)
   i \leftarrow h(k)
  p \leftarrow 0
   repeat
      c \leftarrow A[i]
      if c = \emptyset
          return null
        else if c.key() = k
          return c.value()
       else
          i \leftarrow (i+1) \bmod N
          p \leftarrow p + 1
   until p = N
   return null
```

A Problem with Linear Probing

- Suppose we have a hash table with some clustering.
- Then we add a new element(19) that requires some probes.
- Next, we erase some element
 (32) from the middle of the cluster.
- Finally, we search for the element we added (19). The probing will stop at the location of the element we just erased, reporting that the object of our search was not found.

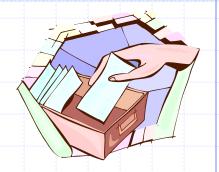


Updates with Linear Probing

- To handle this problem, we introduce a special object, called AVAILABLE, which replaces deleted elements
- \Box erase(k)
 - We search for an entry with key k
 - If such an entry (k, o) is found, we replace it with the special item
 AVAILABLE and we return element o
 - Else, we return *null*

- □ put(*k*, *o*)
 - We throw an exception if the table is full
 - We start at cell h(k)
 - We probe consecutive cells until one of the following occurs
 - A cell *i* is found that is either empty or stores *AVAILABLE*, or
 - N cells have been unsuccessfully probed
 - We store (k, o) in cell i

Double Hashing



Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series

$$(i+jd(k)) \bmod N$$
for $j = 0, 1, ..., N-1$

- □ The secondary hash function d(k) cannot have zero values
- The table size N must be a prime to allow probing of all the cells

 Common choice of compression function for the secondary hash function:

$$d_2(k) = q - k \mod q$$
 where

- q < N
- \blacksquare q is a prime
- □ The possible values for $d_2(k)$ are

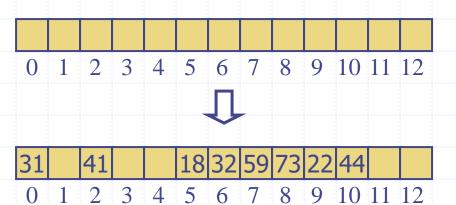
Example of Double Hashing

Consider a hash
 table storing integer
 keys that handles
 collision with double
 hashing

$$N = 13$$

- $h(k) = k \mod 13$
- $d(k) = 7 k \mod 7$
- Insert keys 18, 41,22, 44, 59, 32, 31,73, in this order

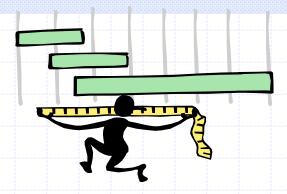
	1))
k	h(k)	d(k)	Prol	oes	
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7	•	
41 22 44 59 32	6	3	6		
31	5	4	5	9	0
73	8	4	8		



Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take O(n) time
- The worst case occurs when all the keys inserted into the map collide
- □ The load factor $\alpha = n/N$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is

 $1/(1-\alpha)$



- The expected running time of all the Dictionary ADT (upcoming lecture) operations in a hash table is O(1)
- In practice, hashing is very fast provided the load factor is not close to 100%
- Applications of hash tables:
 - small databases
 - compilers
 - browser caches

Rehashing

- If the load factor α gets high, many hash table implementations will allocate a new, bigger hash table.
- For a separate chaining implementation, high means some number greater than one.
- For an open addressing implementation, high means approaching one.
- The bigger hash table should be at least twice the size of the smaller one.

- All entries in the old hash table get copied to the new hash table.
- Copying an entry from the old hash table to the new one involves computing a new hash value for the entry. This is called rehashing.