
Adaptable Priority Queues 1

Adaptable Priority
Queues and Maps

3 a

5 g 4 e

© 2010 Goodrich, Tamassia

Sections 8.4 and 9.1

Adaptable Priority Queues 2

Entry and Priority Queue ADTs
❑ A priority queue stores

a collection of entries

❑ Typically, an entry is a
pair (key, value), where
the key indicates the
priority

❑ The priority queue is
associated with a
comparator C, which
compares two entries

❑ Priority Queue ADT:
◼ insert(e)

inserts entry e

◼ removeMin()
removes the entry
with smallest key

◼ min()
returns, but does not
remove, an entry
with smallest key

◼ size(), empty()

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 3

Example
❑ Online trading system where orders to purchase and

sell a stock are stored in two priority queues (one for
sell orders and one for buy orders) as (p,s) entries:

◼ The key, p, of an order is the price

◼ The value, s, for an entry is the number of shares

◼ A buy order (p,s) is executed when a sell order (p’,s’) with
price p’<p is added (the execution is complete if s’>s)

◼ A sell order (p,s) is executed when a buy order (p’,s’) with
price p’>p is added (the execution is complete if s’>s)

❑ What if someone wishes to cancel their order before
it executes?

❑ What if someone wishes to update the price or
number of shares for their order?

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 4

Methods of the Adaptable Priority
Queue ADT

❑ insert(e): Insert the entry e into P and
return a position referring to this entry

❑ remove(p): Remove from P the entry
referenced by position p

❑ replace(p, e): Replace with e the
element associated with the entry
referenced by p and return the position
of the altered entry

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 5

Example
Operation Output P
insert(5,A) p1 (5,A)
insert(3,B) p2 (3,B), (5,A)
insert(7,C) p3 (3,B), (5,A), (7,C)
min() p2 (3,B), (5,A), (7,C)
p2.key() 3 (3,B), (5,A), (7,C)
remove(p1) – (3,B), (7,C)
replace(p2,(9,D)) p4 (7,C), (9,D)
replace(p3,(7,E)) p5 (7,E), (9,D)
remove(p4) – (7,D)

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 6

Locating Entries

❑ In order to implement the operations
remove(p) and replace(p), and we need
fast ways of locating an entry p in a
priority queue

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 7

Location-Aware Entries

❑ A locator-aware entry identifies and tracks
the location of its (key, value) object within a
data structure

❑ Intuitive notion:
◼ Coat claim check

◼ Valet claim ticket

◼ Reservation number

❑ Main idea:
◼ Since entries are created and returned from the

data structure itself, it can return location-aware
entries, thereby making future updates easier

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 8

List Implementation

❑ A location-aware list entry is an object storing

◼ key

◼ value

◼ position (or rank) of the item in the list

❑ In turn, the position (or array cell) stores the entry

❑ Back pointers (or ranks) are updated during swaps

trailerheader nodes/positions

entries

2 c 4 c 5 c 8 c

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 9

Heap Implementation

❑ A location-aware heap
entry is an object
storing

◼ key

◼ value

◼ position of the entry in
the underlying heap

❑ In turn, each heap
position stores an
entry

❑ Back pointers are
updated during entry
swaps

4 a

2 d

6 b

8 g 5 e 9 c

© 2010 Goodrich, Tamassia

Adaptable Priority Queues 10

Performance

❑ Improved times thanks to location-aware
entries are highlighted in red

Method Unsorted List Sorted List Heap

size, empty O(1) O(1) O(1)

insert O(1) O(n) O(log n)

min O(n) O(1) O(1)

removeMin O(n) O(1) O(log n)

remove O(1) O(1) O(log n)

replace O(1) O(n) O(log n)

© 2010 Goodrich, Tamassia

Maps 11

Maps

❑ A map models a searchable collection of
key-value entries

❑ The main operations of a map are for
searching, inserting, and deleting items

❑ Multiple entries with the same key are
not allowed

❑ Applications:
◼ address book

◼ student-record database

© 2010 Goodrich, Tamassia

Entry ADT

❑ An entry stores a key-value pair (k,v)

❑ Methods:

◼ key(): return the associated key

◼ value(): return the associated value

◼ setKey(k): set the key to k

◼ setValue(v): set the value to v

© 2010 Goodrich, Tamassia Maps 12

Maps 13

The Map ADT
❑ find(k): if the map M has an entry with key k, return an

iterator to it; else, return special iterator end

❑ put(k, v): if there is no entry with key k, insert entry
(k, v), and otherwise set the entry’s value to v. Return an
iterator to the new/modified entry

❑ erase(k): if the map M has an entry with key k, remove it
from M. Otherwise give an error.

❑ erase(p): Remove from M the entry referenced by the
iterator p. If p is end, or is not in the map, give an error.

❑ size(), empty()

❑ begin(), end(): return iterators to beginning and end of M

© 2010 Goodrich, Tamassia

Maps 14

Example
Operation Output Map
empty() true Ø
put(5,A) [(5,A)] (5,A)
put(7,B) [(7,B)] (5,A),(7,B)
put(2,C) [(2,C)] (5,A),(7,B),(2,C)
put(8,D) [(8,D)] (5,A),(7,B),(2,C),(8,D)
put(2,E) [(2,E)] (5,A),(7,B),(2,E),(8,D)
find(7) [(7,B)] (5,A),(7,B),(2,E),(8,D)
find(4) end (5,A),(7,B),(2,E),(8,D)
find(2) [(2,E)] (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
erase(5) — (7,B),(2,E),(8,D)
erase(2) — (7,B),(8,D)
find(2) end (7,B),(8,D)
empty() false (7,B),(8,D)

© 2010 Goodrich, Tamassia

Maps 15

Informal Map Interface

© 2010 Goodrich, Tamassia

template <typename K, typename V>

class Map {

public:

class Entry;

class Iterator;

int size() const;

bool empty() const;

Iterator find(const K& k) const;

Iterator put(const K& k, const V& v);

void erase(const K& k)

throw(NonexistentElement);

void erase(const Iterator& p)

throw(NonexistentElement);

Iterator begin();

Iterator end();

};

Maps 16

A Simple List-Based Map

❑ We can implement a map using an unsorted
list

◼ We store the items of the map in a list S (based
on a doubly-linked list), in arbitrary order

trailerheader nodes/positions

entries

9 c 6 c 5 c 8 c

© 2010 Goodrich, Tamassia

Maps 17

The find Algorithm

Algorithm find(k):

for each p in [S.begin(), S.end()) do

if p→key() = k then

return p

return S.end() {there is no entry with key equal to k}

© 2010 Goodrich, Tamassia

We use p→key() as a
shortcut for (*p).key()

Maps 18

The put Algorithm

Algorithm put(k,v):

for each p in [S.begin(), S.end()) do

if p→key() = k then

p→setValue(v)

return p

p = S.insertBack((k,v)) {there is no entry with key k}

n = n + 1 {increment number of entries}

return p

© 2010 Goodrich, Tamassia

Maps 19

The erase Algorithm

Algorithm erase(k):

for each p in [S.begin(), S.end()) do

if p.key() = k then

S.erase(p)

n = n – 1 {decrement number of entries}

© 2010 Goodrich, Tamassia

Maps 20

Performance of a List-Based Map

❑ Performance:

◼ put takes O(n) time since we need to determine whether it is

already in the sequence

◼ find and erase take O(n) time since in the worst case (the

item is not found) we traverse the entire sequence to look
for an item with the given key

❑ The unsorted list implementation is effective only for
maps of small size or for maps in which puts are the
most common operations, while searches and
removals are rarely performed (e.g., historical record
of logins to a workstation)

© 2010 Goodrich, Tamassia

