
Heaps 1

Heaps

2

65

79

© 2010 Goodrich, Tamassia

Section 8.3

Heaps 2

Recall Priority Queue ADT

❑ A priority queue stores a
collection of entries

❑ Typically, an entry is a pair
(key, value), where the key
indicates the priority

❑ Methods of the Priority
Queue ADT

◼ insert(e) inserts an entry e

◼ removeMin()
removes the entry with
smallest key (the one that
would be returned by min)

◼ min()
returns, but does not
remove, an entry with
smallest key

◼ size(), empty()

© 2010 Goodrich, Tamassia

Heaps 3

Recall PQ Sorting

❑ We use a priority queue

◼ Insert the elements with a
series of insert operations

◼ Remove the elements in
sorted order with a series
of removeMin operations

❑ The running time depends
on the priority queue
implementation:

◼ Unsorted sequence gives
selection-sort: O(n2) time

◼ Sorted sequence gives
insertion-sort: O(n2) time

❑ Can we do better?

Algorithm PQ-Sort(S, C)

Input sequence S, comparator C

for the elements of S

Output sequence S sorted in

increasing order according to C

P  priority queue with
comparator C

while S.empty ()

e  S.front();

S.eraseFront()

P.insert (e)

while P.empty()

e  P.min(); P.removeMin()

S.insertBack(e)

© 2010 Goodrich, Tamassia

Heaps 4

Heaps
❑ A heap is a binary tree storing

keys at its nodes and satisfying

the following properties:

❑ Heap-Order Property: for every

internal node v other than the

root, key(v)  key(parent(v))

(this is a min-heap; there are

also max-heaps.).

❑ Complete Binary Tree: let h be

the height of the heap

◼ for i = 0, … , h - 1, there are 2i

nodes of depth i

◼ at depth h, the leaves are as far

to the left as possible

2

65

79

❑ The last node of a heap
is the rightmost node of
maximum depth

last node

© 2019 Shermer

Heaps 5

Height of a Heap
❑ Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

◼ Let h be the height of a heap storing n keys

◼ Since there are 2i keys at depth i = 0, … , h - 1 and at least one key
at depth h, we have n  1 + 2 + 4 + … + 2h-1 + 1

◼ Thus, n  2h , i.e., h  log n

1

2

2h-1

1

keys

0

1

h-1

h

depth

© 2010 Goodrich, Tamassia

Heaps 6

Heaps and Priority Queues
❑ We can use a heap to implement a priority queue

❑ We store a (key, element) item at each internal node

❑ We keep track of the position of the last node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)

© 2010 Goodrich, Tamassia

Heaps 7

Insertion into a
Heap

❑ Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to

the heap

❑ The insertion algorithm
consists of three steps

◼ Find the insertion node z

(the new last node)

◼ Store k at z

◼ Restore the heap-order
property (discussed next)

2

65

79

insertion node

2

65

79 1

z

z

© 2010 Goodrich, Tamassia

Heaps 8

Upheap
❑ After the insertion of a new key k, the heap-order property may be

violated

❑ Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node

❑ Upheap terminates when the key k reaches the root or a node
whose parent has a key smaller than or equal to k

❑ Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6
z

1

25

79 6
z

© 2010 Goodrich, Tamassia

Heaps 9

Removal from a Heap (§ 8.3.3)

❑ Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

❑ The removal algorithm
consists of three steps

◼ Replace the root key with
the key of the last node w

◼ Remove w

◼ Restore the heap-order
property (discussed next)

2

65

79

last node

w

7

65

9

w

new last node

© 2010 Goodrich, Tamassia

Heaps 10

Downheap
❑ After replacing the root key with the key k of the last node, the

heap-order property may be violated

❑ Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

❑ If k is larger than any of its children, swap k with its smallest

child.

❑ Downheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to k

❑ Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9

w

5

67

9

w

© 2010 Goodrich, Tamassia

Heaps 11

Updating the Last Node
❑ The insertion node can be found by traversing a path of O(log n)

nodes

◼ Go up until a left child or the root is reached

◼ If a left child is reached, go to the right child

◼ Go down left until a leaf is reached

❑ Similar algorithm for updating the last node after a removal

© 2010 Goodrich, Tamassia

Heaps 12

Heap-Sort

❑ Consider a priority
queue with n items

implemented by means
of a heap
◼ the space used is O(n)

◼ methods insert and
removeMin take O(log n)

time

◼ methods size, empty,
and min take time O(1)

time

❑ Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)

time

❑ The resulting algorithm is
called heap-sort

❑ Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and
selection-sort

© 2010 Goodrich, Tamassia

Heaps 13

Vector-based Heap
Implementation
❑ We can represent a heap with n

keys by means of a vector of
length n + 1

❑ For the node at rank i

◼ the left child is at rank 2i

◼ the right child is at rank 2i + 1

❑ Links between nodes are not
explicitly stored

❑ The cell of at rank 0 is not used

❑ Operation insert corresponds to
inserting at rank n + 1

❑ Operation removeMin corresponds
to removing at rank n

❑ Yields in-place heap-sort

2

65

79

2 5 6 9 7

1 2 3 4 50

© 2010 Goodrich, Tamassia

Heaps 14

Merging Two Heaps

❑ We are given two
heaps of the same size
2h+1 - 1 and a key k

❑ We create a new heap
with the root node
storing k and with the

two heaps as subtrees

❑ We perform downheap
to restore the heap-
order property

7

3

58

2

64

3

58

2

64

2

3

58

4

67

© 2010 Goodrich, Tamassia

Heaps 15

❑ We can construct a heap
storing n given keys in

using a bottom-up
construction with log n

phases

❑ In phase i, pairs of
heaps with 2i -1 keys are

merged into heaps with
2i+1-1 keys

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1

© 2010 Goodrich, Tamassia

Heaps 16

Example

1516 124 76 2023

25

1516

5

124

11

76

27

2023

© 2010 Goodrich, Tamassia

Heaps 17

Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

20

2723

© 2010 Goodrich, Tamassia

Heaps 18

Example (contd.)

7

15

2516

4

125

8

6

911

20

2723

4

15

2516

5

127

6

8

911

20

2723

© 2010 Goodrich, Tamassia

Heaps 19

Example (end)

4

15

2516

5

127

10

6

8

911

20

2723

5

15

2516

7

1210

4

6

8

911

20

2723

© 2010 Goodrich, Tamassia

Heaps 20

Analysis
❑ We visualize the worst-case time of a downheap with a proxy path

that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

❑ Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

❑ Thus, bottom-up heap construction runs in O(n) time

❑ Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort

© 2010 Goodrich, Tamassia

Heaps 21

Analysis

© 2010 Goodrich, Tamassia

n/2 nodes * 1 unit of work / node

n/4 nodes * 2 units of work / node

n/8 nodes * 3 units of work / node

n/16 nodes * 4 units of work / node

…

❑

