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Recall Priority Queue ADT

❑ A priority queue stores a 
collection of entries

❑ Typically, an entry is a pair
(key, value), where the key 
indicates the priority

❑ Methods of the Priority 
Queue ADT

◼ insert(e) inserts an entry e 

◼ removeMin()
removes the entry with 
smallest key (the one that 
would be returned by min)

◼ min()
returns, but does not 
remove, an entry with 
smallest key

◼ size(), empty()
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Recall PQ Sorting

❑ We use a priority queue

◼ Insert the elements with a 
series of insert operations

◼ Remove the elements in 
sorted order with a series 
of removeMin operations

❑ The running time depends 
on the priority queue 
implementation:

◼ Unsorted sequence gives 
selection-sort: O(n2) time

◼ Sorted sequence gives 
insertion-sort: O(n2) time

❑ Can we do better?

Algorithm PQ-Sort(S, C)

Input sequence S, comparator C

for the elements of S

Output sequence S sorted  in 

increasing order according to C

P  priority queue with 
comparator C

while S.empty ()

e  S.front();

S.eraseFront()

P.insert (e)

while P.empty()

e  P.min(); P.removeMin()

S.insertBack(e)
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Heaps
❑ A heap is a binary tree storing 

keys at its nodes and satisfying 

the following properties:

❑ Heap-Order Property: for every 

internal node v other than the 

root,  key(v)  key(parent(v))

(this is a min-heap; there are 

also max-heaps.). 

❑ Complete Binary Tree: let h be 

the height of the heap

◼ for i = 0, … , h - 1, there are 2i

nodes of depth i

◼ at depth h, the leaves are as far 

to the left as possible
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❑ The last node of a heap 
is the rightmost node of 
maximum depth

last node
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Height of a Heap
❑ Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

◼ Let h be the height of a heap storing n keys

◼ Since there are 2i keys at depth i = 0, … , h - 1 and at least one key 
at depth h, we have n  1 + 2 + 4 + … + 2h-1 + 1

◼ Thus, n  2h , i.e., h  log n
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Heaps and Priority Queues
❑ We can use a heap to implement a priority queue

❑ We store a (key, element) item at each internal node

❑ We keep track of the position of the last node

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Insertion into a 
Heap

❑ Method insertItem of the 
priority queue ADT 
corresponds to the 
insertion of a key k to 

the heap

❑ The insertion algorithm 
consists of three steps

◼ Find the insertion node z

(the new last node)

◼ Store k at z

◼ Restore the heap-order 
property (discussed next)
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Upheap
❑ After the insertion of a new key k, the heap-order property may be 

violated

❑ Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node

❑ Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k

❑ Since a heap has height O(log n), upheap runs in O(log n) time
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Removal from a Heap (§ 8.3.3)

❑ Method removeMin of 
the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap

❑ The removal algorithm 
consists of three steps

◼ Replace the root key with 
the key of the last node w

◼ Remove w

◼ Restore the heap-order 
property (discussed next)
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Downheap
❑ After replacing the root key with the key k of the last node, the 

heap-order property may be violated

❑ Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root

❑ If k is larger than any of its children, swap k with its smallest 

child.

❑ Downheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k

❑ Since a heap has height O(log n), downheap runs in O(log n) time
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Updating the Last Node
❑ The insertion node can be found by traversing a path of O(log n) 

nodes

◼ Go up until a left child or the root is reached

◼ If a left child is reached, go to the right child

◼ Go down left until a leaf is reached

❑ Similar algorithm for updating the last node after a removal
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Heap-Sort

❑ Consider a priority 
queue with n items 

implemented by means 
of a heap
◼ the space used is O(n)

◼ methods insert and 
removeMin take O(log n) 

time

◼ methods size, empty, 
and min take time O(1) 

time

❑ Using a heap-based 
priority queue, we can 
sort a sequence of n
elements in O(n log n) 

time

❑ The resulting algorithm is 
called heap-sort

❑ Heap-sort is much faster 
than quadratic sorting 
algorithms, such as 
insertion-sort and 
selection-sort
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Vector-based Heap 
Implementation
❑ We can represent a heap with n

keys by means of a vector of 
length n + 1

❑ For the node at rank i

◼ the left child is at rank 2i

◼ the right child is at rank 2i + 1

❑ Links between nodes are not 
explicitly stored

❑ The cell of at rank 0 is not used

❑ Operation insert corresponds to 
inserting at rank n + 1

❑ Operation removeMin corresponds 
to removing at rank n

❑ Yields in-place heap-sort
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Merging Two Heaps

❑ We are given two 
heaps of the same size 
2h+1 - 1  and a key k

❑ We create a new heap 
with the root node 
storing k and with the 

two heaps as subtrees

❑ We perform downheap 
to restore the heap-
order property 
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❑ We can construct a heap 
storing n given keys in 

using a bottom-up 
construction with log n

phases

❑ In phase i, pairs of 
heaps with 2i -1 keys are 

merged into heaps with 
2i+1-1 keys

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1
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Example
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Example (contd.)
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Example (contd.)
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Example (end)
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Analysis
❑ We visualize the worst-case time of a downheap with a proxy path 

that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path)

❑ Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)

❑ Thus, bottom-up heap construction runs in O(n) time 

❑ Bottom-up heap construction is faster than n successive insertions 

and speeds up the first phase of heap-sort
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Analysis
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n/2 nodes * 1 unit of work / node

n/4 nodes * 2 units of work / node

n/8 nodes * 3 units of work / node

n/16 nodes * 4 units of work / node

…

❑


