
Course Overview 1

CMPT 225
Course Overview

© 2020 Shermer

Course Overview 2

Data Structures

❑ A course on Data Structures: common ways of

organizing computer memory, with algorithms that

manipulate this memory.

❑ We use the Abstract Data Type approach, which goes

hand-in-hand with object-oriented programming.

❑ The computer language we will be using is C++, and

there will be a lot of programming, but this is not a

programming course in the same way as first-year

courses are.

© 2019 Shermer

Course Overview 3

Professor and TAs

Dr. Thomas C Shermer, a.k.a. Tom

TASC-I 8021

shermer@sfu.ca

Office hours: MWF 15:30-16:20 (or by appointment)

on Zoom

TAs:

Pourya Vaziri pvaziri@sfu.ca

Chao Zhang cza131@sfu.ca

© 2019 Shermer

mailto:shermer@sfu.ca

Course Overview 4

Text

Data Structures and Algorithms in C++
by Goodrich, Tamassia, and Mount, 2nd edition.

The text is required.

It’s an all-around good text. Quite clear and has good
types of examples. As a theoretician and pragmatist, I’m
impressed.

(As a software engineer, there are a few things I’d
change with the examples, but that’s not a big concern
at this point.)

© 2019 Shermer

Course Overview 5

Marking

❑ Midterm Exam 10%

❑ Final Exam 30%

❑ Homework (6) 60%

The final covers the entire course (it is cumulative).

© 2019 Shermer

Course Overview 6

Marking Policies

❑ Partial marks are given on exams:
◼ If you get the wrong answer but show work that shows

some understanding, you will get some marks.

◼ If you get the right answer but show work that shows
some misunderstanding, you will lose some marks.

❑ In the event of a marking dispute (you think your
mark isn’t fair) first contact the marking TA to try
to resolve it. If that doesn’t resolve it, then bring
it to the professor.

© 2019 Shermer

Course Overview 7

Important Dates
Sept 9 Classes Start

Sept 25 Homework 1 due

Oct 9 Homework 2 due

Oct 12 No class (Thanksgiving)

Oct 23 Homework 3 due

Oct 28 In-class midterm

Nov 6 Homework 4 due

Nov 11 No class (Remembrance Day)

Nov 20 Homework 5 due

Dec 4 Homework 6 due

Dec 7 Last day of class

TBA Final exam

© 2019 Shermer

Course Overview 8

Laboratories

❑ Due to the pandemic, we can't gather in a lab
and so we will not have lab sessions.

❑ Instead, I have increased the number of
homeworks so that we basically have one
every two weeks.

❑ Be sure to attend TA (or professor) office
hours if you need help with homeworks.

© 2019 Shermer

Course Overview 9

Assignment Submission

❑ Assignments must be submitted by 11:59 pm
on the due date.

❑ Assignments are to be submitted on CourSys
(coursys.sfu.ca).

❑ Late penalties are -10% per day, up to 5
days. Days are calendar days—weekends and
holidays count.

❑ Assignments submitted after 5 days late will
be given a 0.

© 2019 Shermer

Course Overview 10

Course Syllabus
❑ We will follow the text. You will gain the most

benefit by reading ahead of lecture.

❑ The approximate pace is one chapter per week.

❑ We will not finish the book, but I do recommend
finishing it on your own.

❑ Chapter 1 is a C++ Primer and I assume you have
this knowledge from your prerequisites. Please read
Chapter 1 and ensure that you know the material,
including the part on pseudo-code.

❑ Lecture will start with Chapter 2, Object-Oriented
Design.

© 2019 Shermer

Course Overview 11

Course Syllabus

❑ Chapter 2: Object-Oriented Design

❑ Chapter 3: Arrays, Linked Lists, and Recursion

❑ Chapter 4: Analysis Tools

❑ Chapter 5: Stacks, Queues, and Deques

❑ Chapter 6: List and Iterator ADTs

❑ Chapter 7: Trees

❑ Chapter 8: Heaps and Priority Queues

❑ Chapter 9: Hash Tables, Maps, and Skip Lists

© 2019 Shermer

Course Overview 12

Course Syllabus

❑ Chapter 10: Search Trees

❑ Chapter 11: Sorting, Sets, and Selection

❑ Chapter 12: Strings and Dynamic Programming

❑ Chapter 13: Graph Algorithms

❑ Chapter 14: Memory Management and B-Trees

© 2019 Shermer

Course Overview 13

C++ and Java and …
❑ We use C++ exclusively in this course.

❑ Each computer language is a tool with its own
characteristics, strengths, and weaknesses.

❑ Don’t argue over whether a hammer or a
screwdriver is a better tool. Or C++ or Java.

❑ C++ is a language designed so that correct
programs compile quickly.

❑ Java is a language designed so that incorrect
programs are easy to diagnose.

❑ Use whichever tool is appropriate for the
problem at hand.

© 2019 Shermer

Course Overview 14

Software
❑ g++ (GCC 10.2)

◼ available at https://gcc.gnu.org/

This is the compiler that we will use to compile
your programs. You can develop your programs
on whatever platform you like, provided what
you submit works with GCC 10.2.

The standard runtime libraries are allowed but
other libraries (e.g. libraries of data structures)
are not, unless noted on the assignment.

© 2019 Shermer

https://gcc.gnu.org/

Course Overview 15

Code Style - Comments
❑ Comment your code. Most student code is

undercommented.

❑ Remove as many comments as possible from
your code by making the code say what the
comment says.

// add today’s sales to yearly sales

ytd += sales;

yearToDateSales += dailySales;

© 2019 Shermer

Course Overview 16

Code Style - Comments
void foo(int* A, int n) {

…

// initialize the array A

for(int i = 0; i < n; i++) {

…

}

…

}

© 2019 Shermer

void foo(int* A, int n) {

…

initializeArray(A, n);

…

}

void initializeArray(int* A, int n) {

for(int i = 0; i < n; i++) {

…

}

}

Course Overview 17

Code Style - Optimization

❑ Premature Optimization is the root of all evil.

◼ Clarity and correctness are often more desirable
than speed.

◼ When speed is an issue, first write the program
clearly and correctly, then determine what code is
slowing the program down, and only then optimize
that code.

© 2019 Shermer

Course Overview 18

Code Style - Formatting
❑ Always format your programs consistently.

◼ Indentation

◼ Blank lines

❑ In finished work, never leave in commented-
out or debugging code.

❑ Always include braces around a subordinate
block:

NO:

for(int i=0; i<n; i++)

sum += A[i];

© 2019 Shermer

YES:

for(int i=0; i<n; i++) {

sum += A[i];

}

