
Priority Queues 1

Priority Queues

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Sections 8.1-8.2

Priority Queues 2

Priority Queue ADT

❑ A priority queue stores a
collection of entries

❑ Typically, an entry is a pair
(key, value), where the key
indicates the priority

❑ Main methods of the Priority
Queue ADT

◼ insert(e)

inserts an entry e

◼ removeMin()
removes an entry with
smallest key (the one that
min would return).

❑ Additional methods

◼ min()
returns, but does not
remove, an entry with
smallest key

◼ size(), empty()

❑ Applications:

◼ Standby flyers

◼ Auctions

◼ Stock market

© 2010 Goodrich, Tamassia

Priority Queues 3

Ranking

❑ Often, a program needs to rank, or assign a priority to, some of
its objects (elements).

❑ This priority may be based on something internal to the object
(ranking people by alphabetical order of their first name).

❑ It may also be based on something external to the object
(ranking people by the time they walked into an office).

© 2019 Shermer

Ron Judy Faith Dave

Ron Judy Faith Dave

1:50 1:45 2:03 1:52

Priority Queues 4

Ranking

❑ When the ranking is by something external, we need a way to
associate the external data with elements. This is typically
done with an entry, which is a pair (key, value) where the key
is the external data indicating the priority and the value is the
element being assigned a ranking.

❑ By considering entries rather than elements, we convert all
rankings to use something internal to the object.

© 2019 Shermer

1:45 Judy 2:03 Faith 1:52 Dave1:50 Ron

key value

Priority Queues 5

Comparisons of Entries

❑ Method 1: override operator< on entries.
◼ This is not very flexible; it requires different code for each type of

entry and each comparison method.

❑ Method 2: use a separate object to compare entries.
◼ Flexible. Can have different objects for different types of

comparisons; can use generic entry code.

◼ This leads to the
Comparator ADT.

© 2019 Shermer

template<typename K, typename V>

class Entry {

private:

K* key;

V* value;

…

}

Priority Queues 6

Comparator ADT

❑ Implements the
boolean function
isLess(p, q), which
tests whether p < q

❑ Can derive other relations
from this:

◼ (p == q) is equivalent to

(!isLess(p, q) &&
!isLess(q, p))

❑ Can implement in C++ by
overloading “()”

Two ways to compare 2D points:

class LeftRight { // left-right comparator

public:

bool operator()(const Point2D& p,

const Point2D& q) const

{ return p.getX() < q.getX(); }

};

class BottomTop { // bottom-top

public:

bool operator()(const Point2D& p, const

Point2D& q) const

{ return p.getY() < q.getY(); }

};

© 2010 Goodrich, Tamassia

Priority Queues 7

Using Comparators

template <typename E, typename C> // element type and comparator type

void printSmaller(const E& p, const E& q, const C& isLess) {

cout << (isLess(p, q) ? p : q) << endl;

}

…

Point2D p(1.3, 5.7), q(2.5, 0.6);

LeftRight leftRight;

BottomTop bottomTop;

printSmaller(p, q, leftRight); // outputs: (1.3, 5.7)

printSmaller(p, q, bottomTop); // outputs: (2.5, 0.6)

© 2019 Shermer

Priority Queues 8

An Informal
Priority Queue Interface

template <typename E, typename C> // element type and comparator type

class PriorityQueue {

public:

int size() const;

bool isEmpty() const;

void insert(const E& e);

const E& min() const throw(QueueEmpty);

void removeMin() throw(QueueEmpty);

};

© 2019 Shermer

Priority Queues 9

Total Order Relations

❑ The relationship
encoded by a
Comparator must be
a consistent ordering.
◼ Keys in a priority queue

can be arbitrary objects
on which an order is
defined

◼ Two distinct entries in a
priority queue can have
the same key.

◼ Entries in a priority
queue can be compared
in any fashion at any
time.

❑ Mathematical concept
of total order relation 

◼ Reflexive property:
x  x

◼ Antisymmetric property:
x  y  y  x  x = y

◼ Transitive property:
x  y  y  z  x  z

© 2019 Shermer

Priority Queues 10

Priority Queue Sorting

❑ We can use a priority
queue to sort a set of
comparable elements

1. Insert the elements one
by one with a series of
insert operations

2. Remove the elements in
sorted order with a series
of min/removeMin
operations

❑ The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)

Input sequence S, comparator C for

the elements of S

Output sequence S sorted in

increasing order according to C

P  priority queue with
comparator C

while S.empty ()

e  S.front()

S.eraseFront()

P.insert (e)

while P.empty()

e  P.min()

P.removeMin()

S.insertBack(e)

© 2010 Goodrich, Tamassia

Priority Queues 11

Sequence-based Priority Queue

❑ Implementation with an
unsorted list

❑ Performance:

◼ insert takes O(1) time

since we can insert the
item at the beginning or
end of the sequence

◼ removeMin and min take
O(n) time since we have

to traverse the entire
sequence to find the
smallest key

❑ Implementation with a
sorted list

❑ Performance:

◼ insert takes O(n) time

since we have to find the
place where to insert the
item

◼ removeMin and min take
O(1) time, since the

smallest key is at the
beginning

4 5 2 3 1 1 2 3 4 5

© 2010 Goodrich, Tamassia

Priority Queues 12

Selection-Sort

❑ Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

❑ Running time of Selection-sort:

1. Inserting the elements into the priority queue with n insert
operations takes O(n) time

2. Removing the elements in sorted order from the priority
queue with n removeMin operations takes time

proportional to

n + (n – 1) + ... + 1

❑ Selection-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 13

Selection-Sort Example
Sequence S Priority Queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (7,4)
..
(g) () (7,4,8,2,5,3,9)

Phase 2
(a) (2) (7,4,8,5,3,9)
(b) (2,3) (7,4,8,5,9)
(c) (2,3,4) (7,8,5,9)
(d) (2,3,4,5) (7,8,9)
(e) (2,3,4,5,7) (8,9)
(f) (2,3,4,5,7,8) (9)
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 14

Insertion-Sort

❑ Insertion-sort is the variation of PQ-sort where the
priority queue is implemented with a sorted
sequence

❑ Running time of Insertion-sort:

1. Inserting the elements into the priority queue with n

insert operations takes time proportional to

1 + 2 + …+ n

2. Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

❑ Insertion-sort runs in O(n2) time

© 2010 Goodrich, Tamassia

Priority Queues 15

Insertion-Sort Example
Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
(a) (4,8,2,5,3,9) (7)
(b) (8,2,5,3,9) (4,7)
(c) (2,5,3,9) (4,7,8)
(d) (5,3,9) (2,4,7,8)
(e) (3,9) (2,4,5,7,8)
(f) (9) (2,3,4,5,7,8)
(g) () (2,3,4,5,7,8,9)

Phase 2
(a) (2) (3,4,5,7,8,9)
(b) (2,3) (4,5,7,8,9)
..
(g) (2,3,4,5,7,8,9) ()

© 2010 Goodrich, Tamassia

Priority Queues 16

In-place Insertion-Sort
❑ Instead of using an

external data structure,
we can implement
selection-sort and
insertion-sort in-place

❑ A portion of the input
sequence itself serves as
the priority queue

❑ For in-place insertion-sort

◼ We keep sorted the initial
portion of the sequence

◼ We can use swaps
instead of modifying the
sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

© 2010 Goodrich, Tamassia

Code Clarity

❑ Clarity is perhaps the most important aspect of clean
professional code. Correctness can follow from
clarity but not vice-versa.

❑ Code is written once but read and modified several
times. It is worth putting extra effort into the
writing to make the reading and modification easier.

❑ Two major contributors to clarity are naming and
formatting.

© 2019 Shermer Priority Queues 17

Naming

❑ The naming of variables and functions is the most
difficult and important thing in creating clean code.
It determines whether your code communicates or
obscures what it does.

❑ Choose names that are descriptive. Facility with
natural language will help: dollarsShoes,
dollarsForShoes, dollarsToShoes, dollarsInShoes, and
dollarsByShoes all have different meanings.

❑ Don’t squish words: does wrdSc mean word scope or
weird science?

© 2019 Shermer Priority Queues 18

Naming

❑ Don’t let a variable name get too long (say, 30 characters) or
too short.

❑ In particular, don’t use 1-letter variable names except i, j, k as
indexes in for- or while- loops, i and j as integer arguments to
a short function, and s and t as string arguments to short
functions.

❑ Some standard abbreviations are okay:

numWidgets the number of widgets

widgetNum the number of a particular widget

maxWidgets the maximum number of widgets

avgWidgets the average number of widgets

© 2019 Shermer Priority Queues 19

Formatting

❑ Formatting is the layout of the code on the page/screen. It
includes blank lines and indentation. Formatting should be
done to increase readability.

❑ Use a standard formatting style, but be open to other people
using other styles. Use whatever style is required at your
workplace. If your workplace doesn’t have a style guide, it
should.

❑ For instance, one could use two blank lines between functions,
one blank line between the function comment and the function
itself, and one blank line between code lines to help indicate
grouping of operations.

© 2019 Shermer Priority Queues 20

Formatting

❑ For indentation amount, 4 spaces seems standard, but I’ve also
seen 2-space, 3-space, and tab indentation.

❑ Standard C++ style formatting is:

© 2019 Shermer Priority Queues 21

if (xxxxxx) {
xxxxxx;
xxxxxx;

}
else {

xxxxxx;
xxxxxx;

}

for (x; x; x) {
xxxxxx;
xxxxxx;

}

Formatting

❑ But I’ve also seen the following:

© 2019 Shermer Priority Queues 22

if (xxxxxx)
{

xxxxxx;
xxxxxx;

}
else
{

xxxxxx;
xxxxxx;

}

if (xxxxxx) {
xxxxxx;
xxxxxx;

} else {
xxxxxx;
xxxxxx;

}

Formatting

© 2019 Shermer Priority Queues 23

if (xxxxxx)
{
xxxxxx;
xxxxxx;

}
else
{
xxxxxx;
xxxxxx;

}

