Binary Trees

Section 7.3

[Make Money Fast!]

Stock Bank
Fraud Robbery

AN

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Binary Trees

Binary Trees

o A binary tree is a tree with the
foIIowmg properties: » arithmetic expressions
= Each internal node has at most two

children (exactly two for proper - deC|5|r(]).n Processes
binary trees) = S€arching

m The children of a node are an
ordered pair
o We call the children of an internal
node left child and right child

o Alternative recursive definition: a
binary tree is either
= a3 tree consisting of a single node, or

= a tree whose root has an ordered
pair of children, each of which is a
binary tree

N

o Applications:

© 2010 Goodrich, Tamassia Binary Trees 2

Arithmetic Expression Tree

N

o Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

a Example: arithmetic expression tree for the
expression (2 x (@ —-1) + (3 x b))

a 1

© 2010 Goodrich, Tamassia Binary Trees

Decision Tree

N

o Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

o Example: dining decision

[Want a fast meal?]
Yes No

[How about coffee?} [On expense account?}

Y es/No Y, MO

Starbucks| |[Spike's| |[Al Forno Café Paragon

© 2010 Goodrich, Tamassia Binary Trees

4

N

n number of nodes

e number of
external nodes

i number of internal
nodes

h height /C>\C>

o

Properties of Binary Trees

o Notation # Properties:

h+1< n <211
1< e L2n
h<i<2h—-1

log(h+1)-1< h<n-1

© 2019 Goodrich, Tamassia,

Shermer Binary Trees

Properties of Proper Binary Trees

p
o Notation # Properties:
n number of nodes m 2h+1< n <2ht1_1
e number of s h+1<e <?2h
external nodes
i number of internal = log(n+1)-1<h< (n-1)2
nodes a1
h height el
m N=2e-1
s h<i
= h>log,e

© 2019 Goodrich, Tamassia,
Shermer Binary Trees 6

BinaryTree ADT

N

extends the Tree
ADT, i.e., it inherits
all the methods of
the Tree ADT

o Additional methods:
= position p.left()
= position p.right()

© 2010 Goodrich, Tamassia Binary Trees

a The BinaryTree ADT o Update methods

may be defined by
data structures
implementing the
BinaryTree ADT

N

= element()
n left()

= parent()
= iSRoot()
= isExternal()

© 2019 Shermer

BinaryTree ADT

a There is a position class associated with the tree, to
provide public access to nodes.

a Tree::Position supports member functions

Return the associated element.

Return the left child.
Error if this is an external node.

Return the right child.
Error if this is an external node.

Return the parent. Error if this is the root.
Return true if this is the root; else false.
Return true if this is external; else false.

Binary Trees 8

BinaryTree ADT

N

a The Tree itself supports member functions:

n Size() Return the number of nodes in the tree.
= empty() Return true if the tree is empty; else false.
= root() Return a position for the tree’s root.
Error if the tree is empty.
= positions() Return a position list of all of the nodes
of the tree.

a Note that we haven't defined update functions, so
building a tree isn’t possible right now. We'll do that
later.

© 2019 Shermer Binary Trees 9

N

o In an inorder traversal a

subtree

tree

= Yy(v) = depth of v

Inorder Traversal

node is visited after its left
subtree and before its right

o Application: draw a binary

= X(v) = inorder rank of v

6

Algorithm inOrder(v)
If —v.i1sExternal()
INOrder(v.left())
Visit(v)
If - v.isExternal()
INOrder(v.right())

© 2010 Goodrich, Tamassia

Binary Trees 10

Print Arithmetic Expressions

p
4
a Specialization of an inorder Algorithm printExpression(v)
traversal if —v.isExternal()
= print operand or operator . N/
when visiting node print("(")
= print “(" before traversing left : :
b < printExpression(v.left())
= print“)" after traversing right print(v.element())
subtree i i
If —v.isExternal()
printExpression(v.right())
print (%))

(2x(@-1))+(3 xb))

a 1

© 2010 Goodrich, Tamassia Binary Trees 11

N

o Specialization of a postorder
traversal

= recursive method returning
the value of a subtree

= When visiting an internal
node, combine the values
of the subtrees

Evaluate Arithmetic Expressions

Algorithm evalExpr(v)

If v.isExternal()
return v.element()

else
X «— evalExpr(v.left())
y « evalExpr(v.right())
¢ <« operator stored at v
return x 0y

5 1

© 2010 Goodrich, Tamassia

Binary Trees 12

Euler Tour Traversal

o Generic traversal of a binary tree
o Includes a special cases the preorder, postorder and inorder traversals
o Walk around the tree and visit each internal node three times:

= on the left (preorder)

= from below (inorder)

= 0on the right (postorder)
o Visit each external node once ~ _____---

N

o ——
e —— -~
p—
—_—
—_—
—

© 2010 Goodrich, Tamassia Binary Trees 13

Euler Tour Traversal

N

visitLeft(+) visit(7)
visitLeft(x;) visitRight(x,)
visit(2) visitRight(+)
visitBottom(x ;)

visitLeft(-)

visit(5)

visitBottom(-)

visit(1)

visitRight(-)

visitRight(x,)

visitBottom(+)

visitLeft(x,)

visit(3)

visitBottom(x,)

© 2019 Shermer Binary Trees 14

Linked Structure for Binary Trees

N
\J

o A node is represented

by an object storing
= Element B
= Parent node
» Left child node
= Right child node

o Node objects implement [
the Position ADT / \

A Q [@

C E

© 2010 Goodrich, Tamassia Binary Trees 15

Proper Binary Tree Updates

N

o createRoot()
o expandExternal(p)

o removeAboveExternal(p)

A (D,

p/l ‘\
4

_

© 2019 Shermer Binary Trees

Proper Binary Tree Updates

o removeAboveExternal(p)

C ®

K G H

© 2019 Shermer Binary Trees

Binary Tree Performance
Using Linked Structure

q
Operation Time
left, right, parent, O(1)
isExternal, isRoot
size, empty O(1)
root O(1)
expandExternal, O(1)
removeAboveExternal
positions O(n)

o Space usage is O(n).

© 2010 Goodrich, Tamassia Binary Trees

18

Array-Based Representation of Binary

0 Node v is stored at A[rank(Vv)]

© 2010 Goodrich, Tamassia

m rank(root) = 1

m if node is the left child of parent(node),
rank(node) = 2 - rank(parent(node))

m if node is the right child of parent(node),
rank(node) = 2- rank(parent(node)) + 1

Binary Trees

Trees

a Nodes are stored in an array A 1
[A D G| |H

0 1 3 10 11

19

