
Binary Trees 1

Binary Trees

Make Money Fast!

Stock
Fraud

Bank
Robbery

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Section 7.3

Binary Trees 2

Binary Trees
❑ A binary tree is a tree with the

following properties:
◼ Each internal node has at most two

children (exactly two for proper
binary trees)

◼ The children of a node are an
ordered pair

❑ We call the children of an internal
node left child and right child

❑ Alternative recursive definition: a
binary tree is either
◼ a tree consisting of a single node, or

◼ a tree whose root has an ordered
pair of children, each of which is a
binary tree

❑ Applications:
◼ arithmetic expressions

◼ decision processes

◼ searching

A

B C

F GD E

H I

© 2010 Goodrich, Tamassia

Binary Trees 3

Arithmetic Expression Tree

❑ Binary tree associated with an arithmetic expression

◼ internal nodes: operators

◼ external nodes: operands

❑ Example: arithmetic expression tree for the
expression (2 (a - 1) + (3 b))

+

-2

a 1

3 b

© 2010 Goodrich, Tamassia

Binary Trees 4

Decision Tree

❑ Binary tree associated with a decision process

◼ internal nodes: questions with yes/no answer

◼ external nodes: decisions

❑ Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No

© 2010 Goodrich, Tamassia

Binary Trees 5

Properties of Binary Trees

❑ Notation

n number of nodes

e number of

external nodes

i number of internal

nodes

h height

Properties:

◼ h + 1 n 2h+1 - 1

◼ 1 e 2h

◼ h i 2h - 1

◼ log (n + 1) - 1 h n - 1

© 2019 Goodrich, Tamassia,
Shermer

Binary Trees 6

Properties of Proper Binary Trees

❑ Notation

n number of nodes

e number of

external nodes

i number of internal

nodes

h height
◼ e = i + 1

◼ n = 2e - 1

◼ h i

◼ h log2 e

© 2019 Goodrich, Tamassia,
Shermer

Properties:

◼ 2h + 1 n 2h+1 - 1

◼ h + 1 e 2h

◼ log (n + 1) - 1 h (n - 1)/2

Binary Trees 7

BinaryTree ADT

❑ The BinaryTree ADT
extends the Tree
ADT, i.e., it inherits
all the methods of
the Tree ADT

❑ Additional methods:

◼ position p.left()

◼ position p.right()

❑ Update methods
may be defined by
data structures
implementing the
BinaryTree ADT

© 2010 Goodrich, Tamassia

Binary Trees 8

BinaryTree ADT

❑ There is a position class associated with the tree, to
provide public access to nodes.

❑ Tree::Position supports member functions

◼ element() Return the associated element.

◼ left() Return the left child.
Error if this is an external node.

◼ right() Return the right child.
Error if this is an external node.

◼ parent() Return the parent. Error if this is the root.

◼ isRoot() Return true if this is the root; else false.

◼ isExternal() Return true if this is external; else false.

© 2019 Shermer

Binary Trees 9

BinaryTree ADT

❑ The Tree itself supports member functions:

◼ size() Return the number of nodes in the tree.

◼ empty() Return true if the tree is empty; else false.

◼ root() Return a position for the tree’s root.
Error if the tree is empty.

◼ positions() Return a position list of all of the nodes
of the tree.

❑ Note that we haven’t defined update functions, so
building a tree isn’t possible right now. We’ll do that
later.

© 2019 Shermer

Binary Trees 10

Inorder Traversal
❑ In an inorder traversal a

node is visited after its left
subtree and before its right
subtree

❑ Application: draw a binary
tree
◼ x(v) = inorder rank of v

◼ y(v) = depth of v

Algorithm inOrder(v)

if v.isExternal()

inOrder(v.left())

visit(v)

if v.isExternal()

inOrder(v.right())

3

1

2

5

6

7 9

8

4

© 2010 Goodrich, Tamassia

Binary Trees 11

Print Arithmetic Expressions
❑ Specialization of an inorder

traversal
◼ print operand or operator

when visiting node

◼ print “(“ before traversing left
subtree

◼ print “)“ after traversing right
subtree

Algorithm printExpression(v)

if v.isExternal()
print(“(’’)

printExpression(v.left())

print(v.element())

if v.isExternal()

printExpression(v.right())

print (“)’’)

+

-2

a 1

3 b
((2 (a - 1)) + (3 b))

© 2010 Goodrich, Tamassia

Binary Trees 12

Evaluate Arithmetic Expressions
❑ Specialization of a postorder

traversal

◼ recursive method returning
the value of a subtree

◼ when visiting an internal
node, combine the values
of the subtrees

Algorithm evalExpr(v)

if v.isExternal()

return v.element()

else

x evalExpr(v.left())

y evalExpr(v.right())

 operator stored at v

return x y+

-2

5 1

3 2

© 2010 Goodrich, Tamassia

Binary Trees 13

Euler Tour Traversal
❑ Generic traversal of a binary tree

❑ Includes a special cases the preorder, postorder and inorder traversals

❑ Walk around the tree and visit each internal node three times:

◼ on the left (preorder)

◼ from below (inorder)

◼ on the right (postorder)

❑ Visit each external node once +

-2

5 1

3 7

L

B

R

© 2010 Goodrich, Tamassia

Binary Trees 14

Euler Tour Traversal
visitLeft(+)

visitLeft(×1)

visit(2)

visitBottom(×1)

visitLeft(–)

visit(5)

visitBottom(–)

visit(1)

visitRight(–)

visitRight(×1)

visitBottom(+)

visitLeft(×2)

visit(3)

visitBottom(×2)

+

2

-2

5 1

3 7

1

© 2019 Shermer

visit(7)

visitRight(×2)

visitRight(+)

Binary Trees 15

Linked Structure for Binary Trees
❑ A node is represented

by an object storing

◼ Element

◼ Parent node

◼ Left child node

◼ Right child node

❑ Node objects implement
the Position ADT

B

DA

C E

B

A D

C E

© 2010 Goodrich, Tamassia

Binary Trees 16

Proper Binary Tree Updates

❑ createRoot()

❑ expandExternal(p)

❑ removeAboveExternal(p)

B

DA

C E

© 2019 Shermer

B

DA

G

EF

H

p

Binary Trees 17

Proper Binary Tree Updates

❑ removeAboveExternal(p)

© 2019 Shermer

B

FA

G H

B

DA

G

EF

H

p

Binary Trees 18

Binary Tree Performance
Using Linked Structure

❑ Space usage is O(n).

© 2010 Goodrich, Tamassia

Operation Time

left, right, parent,
isExternal, isRoot

O(1)

size, empty O(1)

root O(1)

expandExternal,
removeAboveExternal

O(1)

positions O(n)

Array-Based Representation of Binary
Trees

❑ Nodes are stored in an array A

© 2010 Goodrich, Tamassia 19Binary Trees

❑ Node v is stored at A[rank(v)]

◼ rank(root) = 1

◼ if node is the left child of parent(node),
rank(node) = 2 rank(parent(node))

◼ if node is the right child of parent(node),
rank(node) = 2 rank(parent(node)) + 1

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

A B D G H ……

1 2 3 10 110

