
Trees 1

Trees

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Sections 7.1-7.2

Trees 2

What is a Tree

❑ In computer science, a
tree is an abstract model
of a hierarchical
structure

❑ A tree consists of nodes
with a parent-child
relation

❑ Applications:

◼ Organization charts

◼ File systems

◼ Programming
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

© 2010 Goodrich, Tamassia

Trees 3

subtree

Tree Terminology
❑ Root: node without parent (A)

❑ Internal node: node with at least
one child (A, B, C, F)

❑ External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

❑ Ancestors of a node: parent,
grandparent, great-grandparent,
etc.

❑ Depth of a node: number of
ancestors

❑ Height of a tree: maximum depth
of any node (3)

❑ Descendant of a node: child,
grandchild, great-grandchild, etc.

A

B DC

G HE F

I J K

❑ Subtree: tree consisting of
a node and its
descendants

© 2010 Goodrich, Tamassia

Trees 4

Ordered Trees
❑ An ordered tree is a rooted tree where there is a linear ordering

defined for the children of each node.

❑ In other words, we can identify the children of a node as the
first, the second, the third, etc.

❑ Normally the children are drawn from left (first) to right (last).

Book

Preface Chapter 2Chapter 1

§1.1 §1.2¶1 ¶2

¶1 ¶2 ¶3

…

…

© 2019 Shermer

Trees 5

Tree ADT
❑ We use positions to abstract

nodes

❑ Generic methods:

◼ integer size()

◼ boolean empty()

❑ Accessor methods:

◼ position root()

◼ list<position> positions()

❑ Position-based methods:

◼ position p.parent()

◼ list<position> p.children()

Query methods:

◼ boolean p.isRoot()

◼ boolean p.isExternal()

Additional update methods
may be defined by data
structures implementing the
Tree ADT

© 2010 Goodrich, Tamassia

Trees 6

Informal Position Interface

template <typename E>

class Position<E> {

public:

E& operator*();

Position parent() const;

PositionList children() const;

bool isRoot() const;

bool isExternal() const;

}

© 2019 Shermer

Trees 7

Informal Tree Interface

template <typename E>

class Tree<E> {

public:

class Position;

class PositionList;

int size() const;

bool empty() const;

Position root() const;

PositionList positions() const;

}

© 2019 Shermer

Trees 8

Linked Structure for Trees
❑ A node is represented by

an object storing
◼ Element

◼ Parent node

◼ Sequence of children
nodes

❑ Node objects implement
the Position ADT

B

DA

C E

F

B

 A D F

C E

© 2010 Goodrich, Tamassia

Trees 9

Analysis of Tree ADT
Implementation

Using the linked structure, we can achieve the
following running times for the operations of the Tree
ADT:

© 2019 Shermer

Operation Time [for iterator]

isRoot() O(1)

isExternal() O(1)

parent() O(1)

children(p) O(cp) [O(1)]

size() O(1)

empty() O(1)

root() O(1)

positions() O(n) [O(1)]

cp is the number of
children of node p

n is the number of
nodes in the tree

Trees 10

Depth of a Node
❑ Recall that the depth of a node is the number of

ancestors it has.

❑ We can recursively define the depth of a node p as
follows:
◼ if p is the root, then its depth is 0

◼ otherwise, the depth of p is 1 plus the depth of the parent of p

Algorithm depth(T, p)

if p.isRoot()

return 0

else

return 1 + depth(T, p.parent())

© 2019 Shermer

Trees 11

Analysis of Depth()
❑ The algorithm depth is recursive.

❑ The base case is when p is the root of the tree.

❑ It makes progress towards the base case with every recursive call,
since the call has a parameter of the parent of p, which is closer to
the root than p.

❑ In the worst case, depth could take O(n) time.

❑ It is more accurate to characterize the running time in terms of the
output parameter rather than the input (!)

❑ If depth(p) has an output of dp, then the running time is O(dp),
since it makes 1 call for each ancestor of p, and each call takes O(1)
time. [Here the running time is ~1+dp, but the O() swallows the 1.]

❑ The parameter dp is often much smaller than n, so characterizing
the worst-case time as O(dp) gives you more information than
characterizing it as O(n).

© 2019 Shermer

Trees 12

Height of a Node
❑ The height of a node is defined recursively as well:

◼ if p is external, then its height is 0

◼ otherwise, the height of p is 1 plus the maximum height of a child of p.

❑ The height of a tree is the height of the root of the tree.

❑ Or, the height of a tree is equal to the maximum depth
of its external nodes.

Algorithm height1(T)

h = 0

for each p in T.positions() do

if p.isExternal() then

h = max(h, depth(T, p))

return h

© 2019 Shermer

Trees 13

Analysis of Height1()

© 2019 Shermer

n
/2

 n
o
d
e
s

…

…

n/2 nodes

Trees 14

Height of a Node, Again
❑ A better algorithm uses the recursive definition of height

directly.
◼ if p is external, then its height is 0

◼ otherwise, the height of p is 1 plus the maximum height of a child of p.

Algorithm height2(T, p)

if p.isExternal() then

return 0

else

h = 0

for each q in p.children() do

h = max(h, height2(T, q))

return 1 + h

© 2019 Shermer

Trees 15

Analysis of Height2()

© 2019 Shermer

2n – 1.

Trees 16

Preorder Traversal
❑ A traversal visits the nodes of a

tree in a systematic manner

❑ In a preorder traversal, a node is
visited before its descendants

❑ Application: print a structured
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preorder(v)

visit(v)

for each child w of v

preorder (w)

© 2010 Goodrich, Tamassia

Trees 17

Preorder Print
Make Money Fast!

1. Motivations

1.1 Greed

1.2 Avidity

2. Methods

2.1 Stock Fraud

2.2 Ponzi Scheme

2.3 Bank Robbery

References Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preorderPrint(v)

print(v)

for each child w of v

preorderPrint(w)

© 2019 Shermer

Trees 18

Preorder Print
Make Money Fast!

1. Motivations

1.1 Greed

1.2 Avidity

2. Methods

2.1 Stock Fraud

2.2 Ponzi Scheme

2.3 Bank Robbery

References Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9

Algorithm preorderPrint(v, indent)

print indent*2 spaces

print(v)

for each child w of v

preorderPrint(w, indent + 1)

© 2019 Shermer

Trees 19

Preorder Sum
PreorderSum(v)
returns the sum of
the elements of the
subtree of v.

5.6

3.2 4.73.3

2.1 6.47.7 1.2 4.3

1

2

3

5

4 6 7 8

9

Algorithm preorderSum(v)

sum = v.element()

for each child w of v

sum = sum + preorderSum(w)

return sum

© 2019 Shermer

Trees 20

Postorder Traversal
❑ In a postorder traversal, a

node is visited after its
descendants

❑ Application: compute space
used by files in a directory and
its subdirectories

Algorithm postorder(v)

for each child w of v

postorder (w)

visit(v)

cs16/

homeworks/
todo.txt

1K
programs/

DDR.cpp
10K

Stocks.cpp
25K

h1c.doc
3K

h1nc.doc
2K

Robot.cpp
20K

9

3

1

7

2 4 5 6

8

© 2010 Goodrich, Tamassia

Trees 21

Postorder Print
1.1 Greed

1.2 Avidity

1. Motivations

2.1 Stock Fraud

2.2 Ponzi Scheme

2.3 Bank Robbery

2. Methods

References

Make Money Fast! Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

9

3

1

7

2
4 5 6

8

Algorithm postorderPrint(v, indent)

for each child w of v

postorderPrint(w, indent + 1)

print indent*2 spaces

print(v)

© 2019 Shermer

Trees 22

Postorder Sum
PostorderSum(v)
returns the sum of
the elements of the
subtree of v.

5.6

3.2 4.73.3

2.1 6.47.7 1.2 4.3

9

3

1

7

2 4 5 6

8

Algorithm postorderSum(v)

sum = 0

for each child w of v

sum = sum + postorderSum(w)

return sum + v.element()

© 2019 Shermer

Trees 23

Expression Evaluation
(Postorder)
evaluate(v) returns
the value of the
expression
represented by the
subtree of v.

+

– *

2.1 3.07.7 1.2

7

3

1

6

2 4 5

Algorithm evaluate(v)

if v.isExternal()

return v.element()

else

arglist = { }

for each child w of v

arglist = arglist + evaluate(w)

return apply(v.element(), arglist)

© 2019 Shermer

(7.7 – 1.2) + (2.1 * 3.0)

Trees 24

Expression Evaluation
(Postorder)

n7 calls n3

n3 calls n1

n1 returns 7.7

n3 calls n2

n2 returns 1.2

n3 executes apply(–, {7.7, 1.2})

n3 returns 6.5

n7 calls n6

n6 calls n4

n4 returns 2.1

n6 calls n5

n5 returns 3.0

n6 executes apply(*, {2.1, 3.0})

n6 returns 6.3

n7 executes apply(+, {6.5, 6.3})

n7 returns 12.8

+

– *

2.1 3.07.7 1.2

7

3

1

6

2 4 5

© 2019 Shermer

