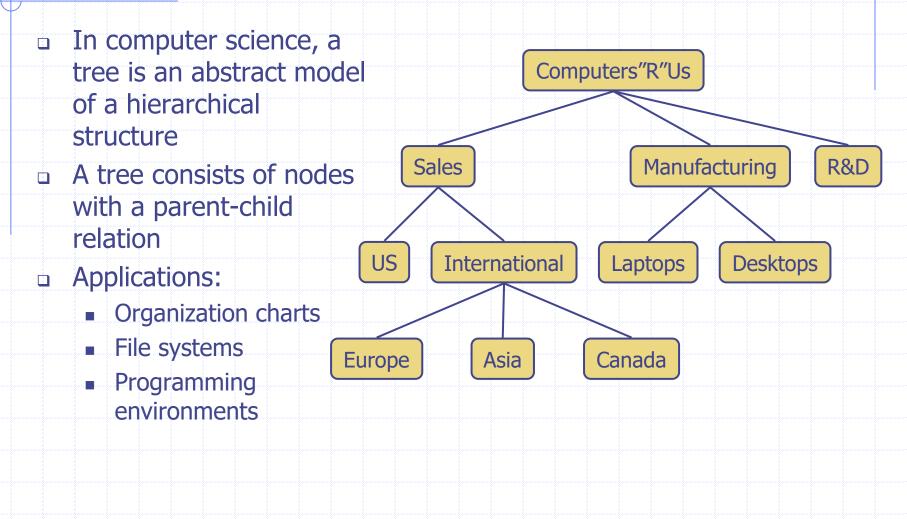


What is a Tree



Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, great-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, great-grandchild, etc.

 Subtree: tree consisting of a node and its descendants

G

subtree

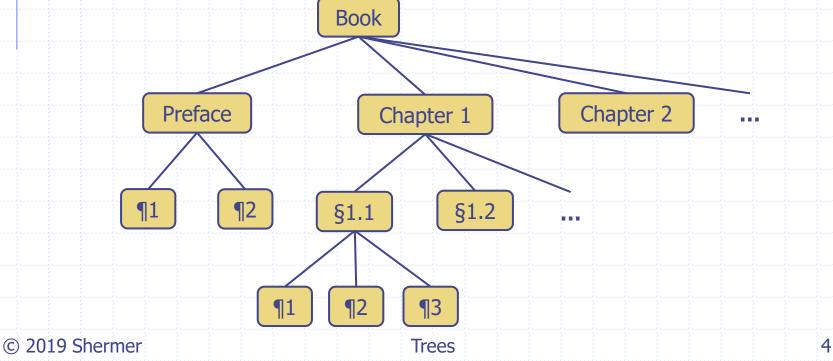
Κ

B

E

Ordered Trees

- An ordered tree is a rooted tree where there is a linear ordering defined for the children of each node.
- In other words, we can identify the children of a node as the first, the second, the third, etc.
- Normally the children are drawn from left (first) to right (last).



Tree ADT

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean empty()
- Accessor methods:
 - position root()
 - list<position> positions()
- Position-based methods:
 - position p.parent()
 - list<position> p.children()

- Query methods:
 - boolean p.isRoot()
 - boolean p.isExternal()
- Additional update methods may be defined by data structures implementing the Tree ADT

Informal Position Interface

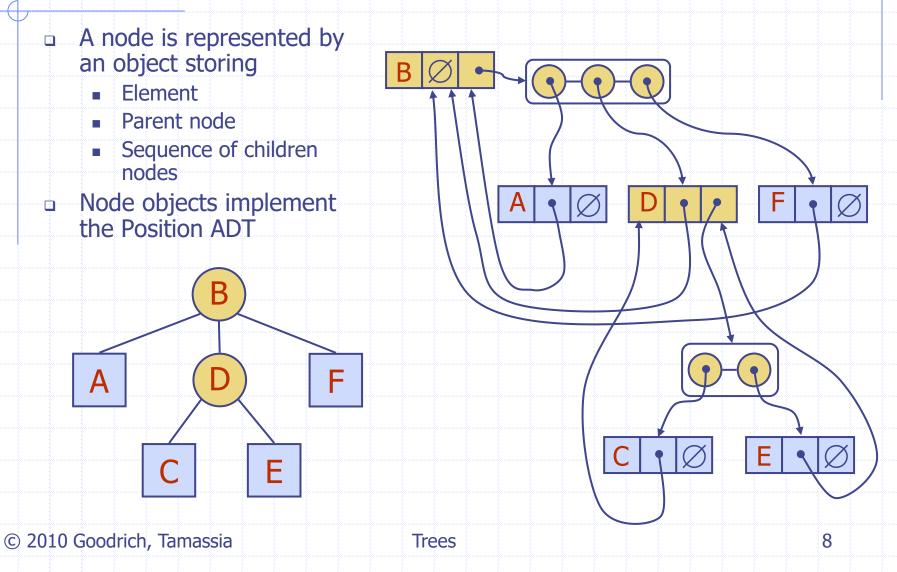
template <typename E>
class Position<E> {
public:
 E& operator*();
 Position parent() const;
 PositionList children() const;
 bool isRoot() const;
 bool isExternal() const;
}

Informal Tree Interface

template <typename E>
class Tree<E> {
public:
 class Position;
 class PositionList;
 int size() const;
 bool empty() const;
 Position root() const;
 PositionList positions() const;

}

Linked Structure for Trees



Analysis of Tree ADT Implementation

Using the linked structure, we can achieve the following running times for the operations of the Tree ADT:

Operation	Time	[for iterator]	
isRoot()	O(1)		
isExternal()	O(1)		
parent()	O(1)		
children(p)	O(c _p)	[O(1)]	c_p is the number of
size()	O(1)		children of node p
empty()	O(1)		
root()	O(1)		
positions()	O(n)	[O(1)]	n is the number of
			nodes in the tree
	Trees		9

Depth of a Node

- Recall that the depth of a node is the number of ancestors it has.
- We can recursively define the depth of a node p as follows:
 - if p is the root, then its depth is 0
 - otherwise, the depth of p is 1 plus the depth of the parent of p

Algorithm	dept	t h(T,)	p)		
if p.isR	oot())			
retur	:n 0				
else					
retur	n 1	+ dep	th(T,	p.pa	rent())

Analysis of Depth()

- □ The algorithm *depth* is recursive.
- □ The base case is when p is the root of the tree.
- It makes progress towards the base case with every recursive call, since the call has a parameter of the parent of p, which is closer to the root than p.
- □ In the worst case, *depth* could take O(n) time.
- It is more accurate to characterize the running time in terms of the output parameter rather than the input (!)
- If *depth(p)* has an output of d_p, then the running time is O(d_p), since it makes 1 call for each ancestor of p, and each call takes O(1) time. [Here the running time is ~1+d_p, but the O() swallows the 1.]
- The parameter d_p is often much smaller than n, so characterizing the worst-case time as O(d_p) gives you more information than characterizing it as O(n).

Height of a Node

- □ The height of a node is defined recursively as well:
 - if p is external, then its height is 0
 - otherwise, the height of p is 1 plus the maximum height of a child of p.
- □ The height of a tree is the height of the root of the tree.
- Or, the height of a tree is equal to the maximum depth of its external nodes.

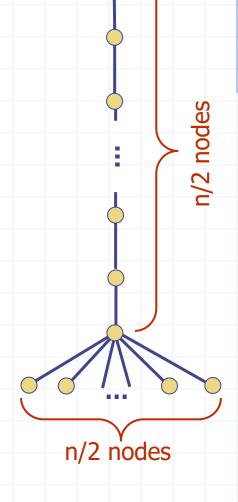
Algorithm height1(T) h = 0 for each p in T.positions() do if p.isExternal() then h = max(h, depth(T, p)) return h

Analysis of Height1()

- □ The algorithm *height1* is not very efficient.
- It takes O(n) time simply to go through all of the positions and check if they are external.
- It takes additional time to compute the depths of all of the external nodes. Let E be the set of external nodes of our tree T, and d_p be the depth of node p in the tree. The time to compute the depths is proportional to:

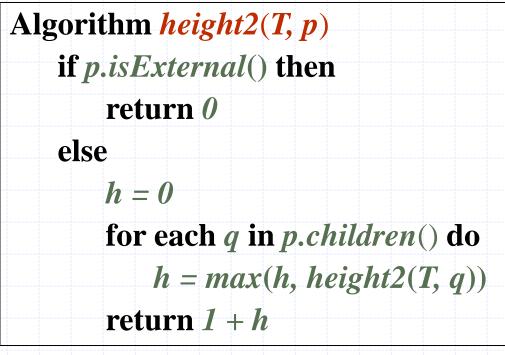
 $\sum_{p \in E} (1 + d_p)$

In the worst case, this sum is Θ(n²).
 Therefore, *height1* takes O(n²) time.



Height of a Node, Again

- A better algorithm uses the recursive definition of height directly.
 - if p is external, then its height is 0
 - otherwise, the height of p is 1 plus the maximum height of a child of p.



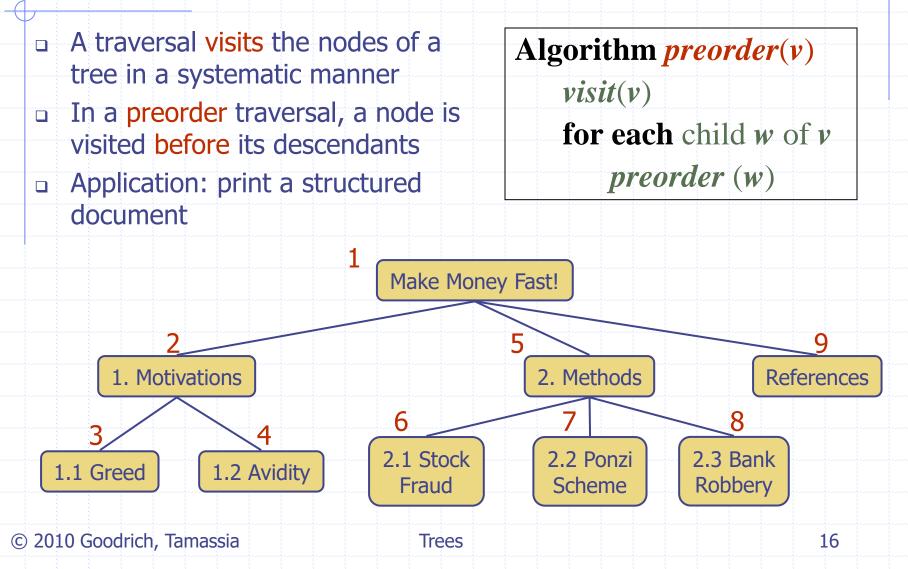
Analysis of Height2()

- □ The algorithm *height2* is more efficient than *height1*.
- □ *height2* takes time $O(1 + c_p)$ time to perform the nonrecursive part: O(1) time for the **if**, the **return**s, and the initial assignment to h, and $O(c_p)$ for the **for** loop. Here c_p is the number of children of node p.
- If initially called with the root of the tree T as p, it will eventually be called once for each node of the tree.
- Thus, the total time taken by *height2* is the sum of the nonrecursive time over all nodes of the tree.

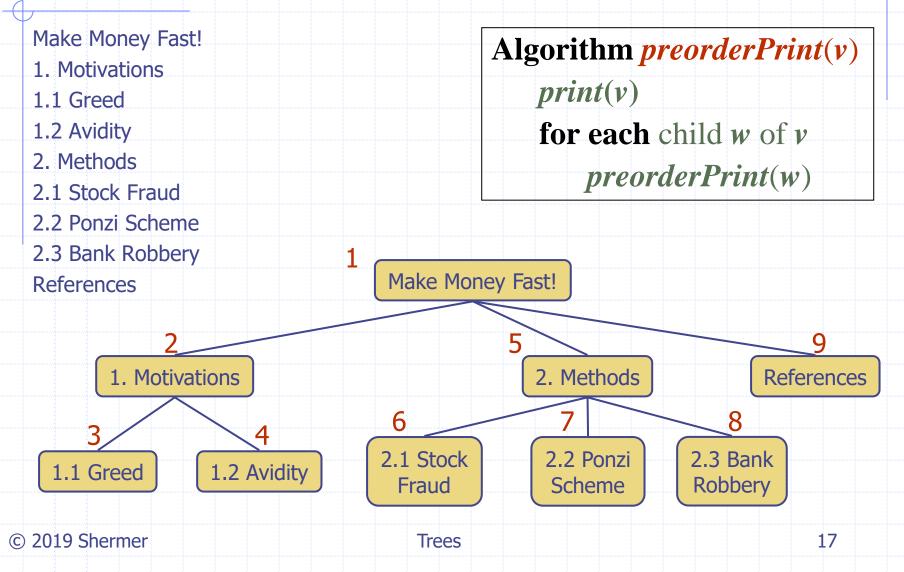
$$\sum_{p \in T} (1 + c_p)$$

- This sum is 2n 1.
- Therefore, *height2* takes O(n) time.

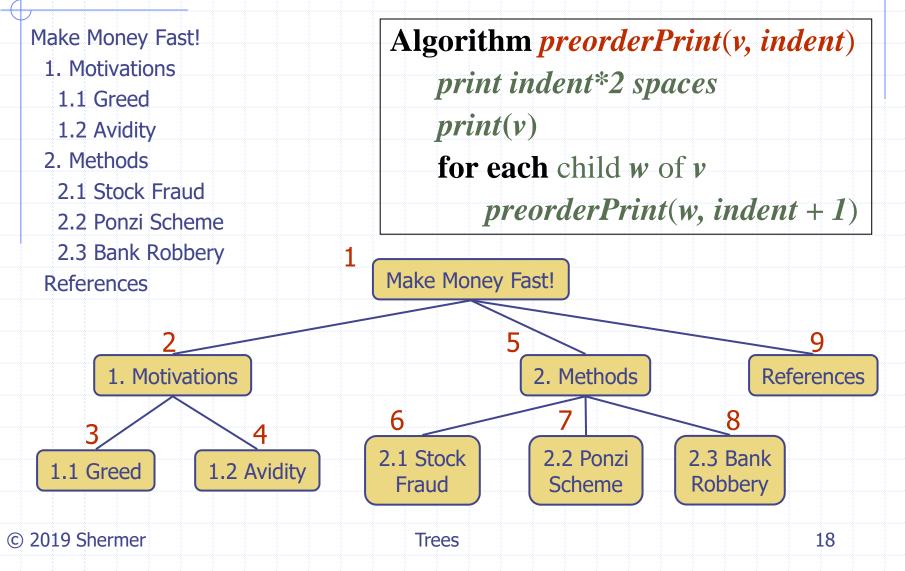
Preorder Traversal



Preorder Print

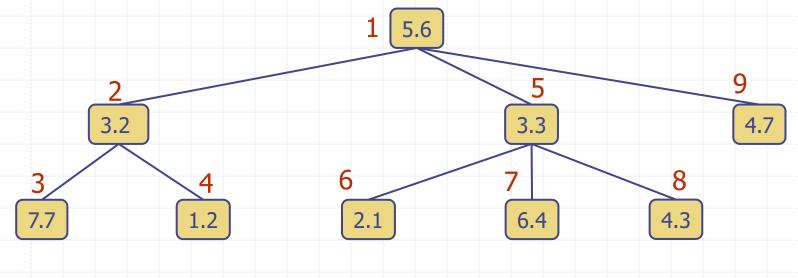


Preorder Print

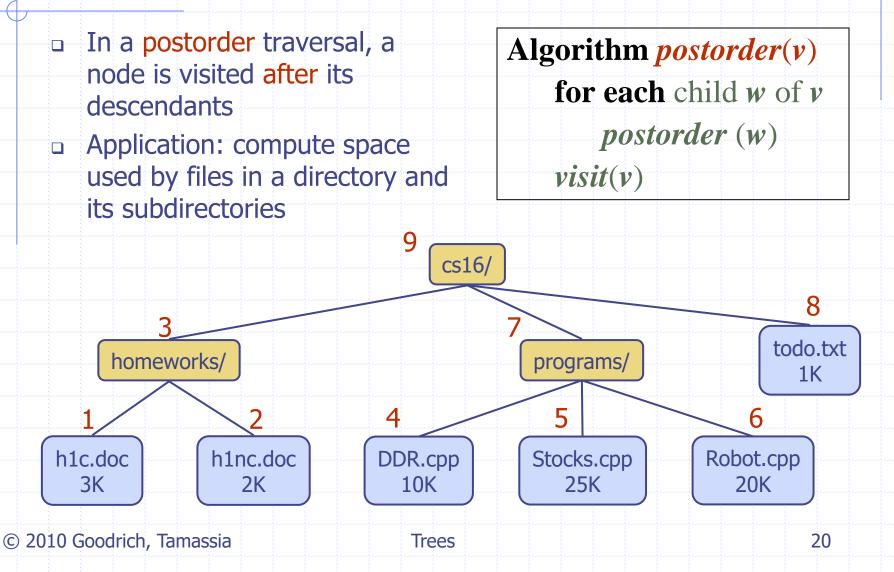


Preorder Sum

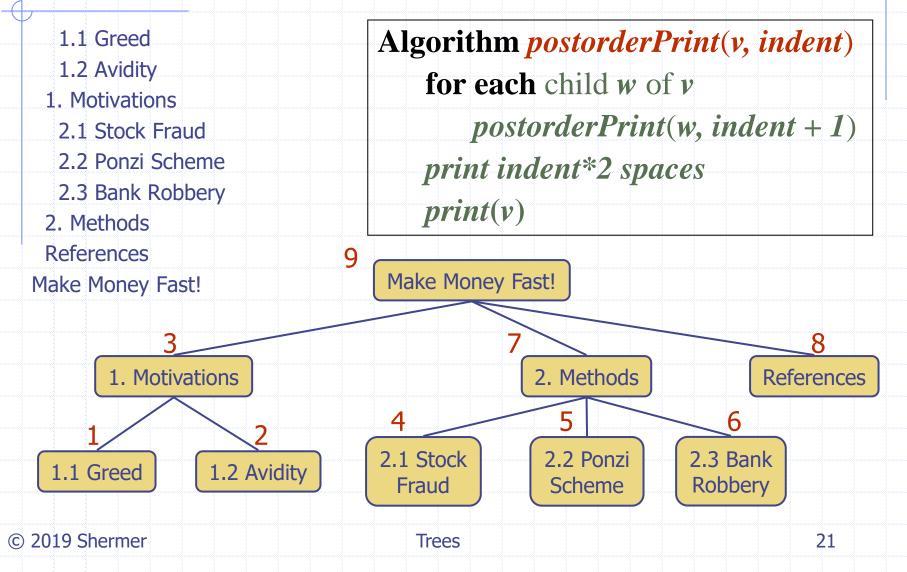
PreorderSum(v) returns the sum of the elements of the subtree of v. Algorithm preorderSum(v) sum = v.element() for each child w of v sum = sum + preorderSum(w) return sum



Postorder Traversal

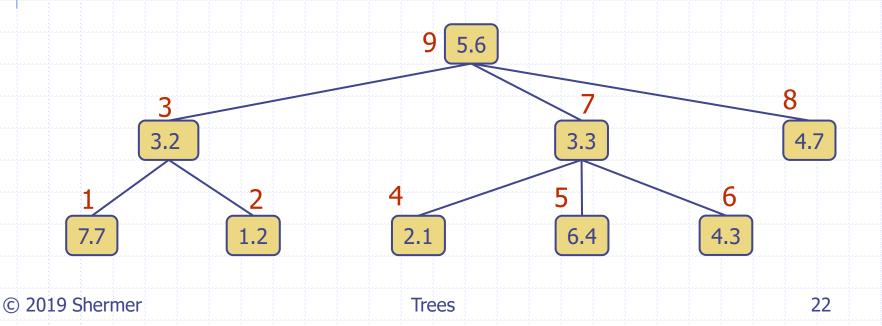


Postorder Print



Postorder Sum

PostorderSum(v) returns the sum of the elements of the subtree of v. Algorithm postorderSum(v) sum = 0 for each child w of v sum = sum + postorderSum(w) return sum + v.element()



Expression Evaluation (Postorder)

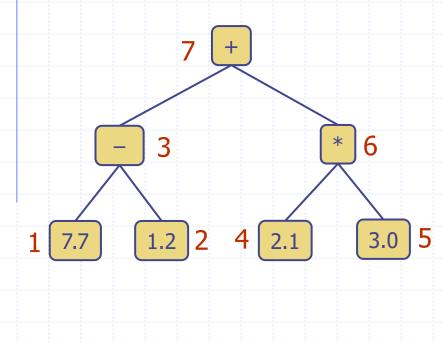
evaluate(v) returns the value of the expression represented by the subtree of v.

3

Algorithm evaluate(v) **if** *v*.*i*s*External*() return v.element() else $arglist = \{ \}$ for each child w of v arglist = arglist + evaluate(w) return apply(v.element(), arglist) 6

*

Expression Evaluation (Postorder)



n7 calls n3 n3 calls n1 n1 returns 7.7 n3 calls n2 n2 returns 1.2 n3 executes apply(-, {7.7, 1.2}) n3 returns 6.5 n7 calls n6 n6 calls n4 n4 returns 2.1 n6 calls n5 n5 returns 3.0 n6 executes apply(* , {2.1, 3.0}) n6 returns 6.3 n7 executes apply $(+, \{6.5, 6.3\})$ n7 returns 12.8