Trees

Sections 7.1-7.2

Stock
Fraud

[Make Money Fast!]

Ponzi
Scheme

Bank
Robbery

AN

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Trees

What is a Tree

o In computer science, a
tree is an abstract model [Computers'RUs |
of a hierarchical
structure

o A tree consists of nodes
with a parent-child
relation

o Applications:

= Organization charts

= File systems Europe | Asia | Canada
= Programming

environments

N

[Manufacturing]

N

[US] [International] [Laptops] [Desktops]

© 2010 Goodrich, Tamassia Trees 2

Tree Terminology

N

Root: node without parent (A) a Subtree: tree consisting of
a Internal node: node with at least a node and its
one child (A, B, C, F) descendants

a External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)

a Ancestors of a node: parent,
grandparent, great-grandparent,
etc.

a Depth of a node: number of
ancestors

o Height of a tree: maximum depth
of any node (3)

o Descendant of a node: child, 1] (3 [K]
grandchild, great-grandchild, etc.

© 2010 Goodrich, Tamassia Trees 3

Ordered Trees

o An ordered tree is a rooted tree where there is a linear ordering
defined for the children of each node.

o In other words, we can identify the children of a node as the
first, the second, the third, etc.

o Normally the children are drawn from left (first) to right (last).

N

[Preface] [Chapter 1] [Chapter 2]

L] (2] (93]

© 2019 Shermer Trees

N

Tree ADT

Q

© 2010 Goodrich, Tamassia

We use positions to abstract
nodes

Generic methods:

= integer size()

= boolean empty()
Accessor methods:

= position root()

m list<position> positions()
Position-based methods:

= position p.parent()

m list<position> p.children()

Trees

#® Query methods:

= boolean p.isRoot()
= boolean p.isExternal()

Additional update methods

may be defined by data
structures implementing the
Tree ADT

Informal Position Interface

N

template <typename E>
class Position<E> {
public:
E& operator*();
Position parent() const;
PositionList children() const;
bool isRoot() const;
bool isExternal() const;

© 2019 Shermer Trees

Informal Tree Interface

N

template <typename E>
class Tree<E> {
public:
class Position;
class PositionList;
int size() const;
bool empty() const;
Position root() const;
PositionList positions() const;

© 2019 Shermer Trees

N

o A node is represented by
an object storing

s Element
s Parent node

= Sequence of children
nodes

o Node objects implement
the Position ADT

Linked Structure for Trees

B

%)

o—

Al (D) |F

C E

© 2010 Goodrich, Tamassia

Trees

Analysis of Tree ADT
Implementation

N

L

Using the linked structure, we can achieve the
following running times for the operations of the Tree
ADT:

Operation Time [for iterator]

isRoot() O(1)

isExternal() O(1)

parent() O(1)

children(p) O(c,) [O(1)] c, is the number of
size() 0(1) children of node p
empty() O(1)

root() O(1)

positions() O(n) [0O(1)] n is the number of

nodes in the tree

© 2019 Shermer Trees 9

Depth of a Node

N

a Recall that the depth of a node is the number of
ancestors it has.
o We can recursively define the depth of a node p as

follows:
= if pis the root, then its depth is O
= otherwise, the depth of p is 1 plus the depth of the parent of p

Algorithm depth(T, p)
If p.isRoot()
return 0

else
return 1 + depth(T, p.parent())

© 2019 Shermer Trees 10

Analysis of Depth()

o The algorithm depth is recursive.
o The base case is when p is the root of the tree.

o It makes progress towards the base case with every recursive call,
since the call has a parameter of the parent of p, which is closer to
the root than p.

o In the worst case, depth could take O(n) time.

o It is more accurate to characterize the running time in terms of the
output parameter rather than the input (!)

o If depti(p) has an output of d,, then the running time is O(d,),
since it makes 1 call for each ancestor of p, and each call takes O(1)
time. []

o The parameter d, is often much smaller than n, so characterizing
the worst-case time as O(d,,) gives you more information than
characterizing it as O(n).

N

© 2019 Shermer Trees 11

Height of a Node

N

a The height of a node is defined recursively as well:

n if p is external, then its height is 0
= otherwise, the height of p is 1 plus the maximum height of a child of p.

o The height of a tree is the height of the root of the tree.

a Or, the height of a tree is equal to the maximum depth
of its external nodes.

Algorithm height1(T)
h=0
for each p in T.positions() do
If p.isExternal() then
h = max(h, depth(T, p))
return h

© 2019 Shermer Trees 12

Analysis of Height1() ?

p
4
o The algorithm Aeightl is not very efficient. <B
o It takes O(n) time simply to go through all of
the positions and check if they are external. Q o
o It takes additional time to compute the > ?é
depths of all of the external nodes. Let E be ~
the set of external nodes of our tree T, and d, L | <
be the depth of node p in the tree. The time
to compute the depths is proportional to: O

Z (1+d,) /
Ay m
a In the worst case, this sum is O(n?2).

a Therefore, heightl takes O(n?) time. b /
n/2 nodes

© 2019 Shermer Trees 13

Height of a Node, Again

N

o A better algorithm uses the recursive definition of height
directly.

m if p is external, then its height is O
m otherwise, the height of p is 1 plus the maximum height of a child of p.

Algorithm height2(T, p)
If p.isExternal() then
return O
else
h=0
for each g in p.children() do
h = max(h, height2(T, q))
return 1+ h

© 2019 Shermer Trees 14

Analysis of Height2()

N

a The algorithm Aeight2 is more efficient than Aeight1.

a height2 takes time O(1 + c,) time to perform the nonrecursive
part: O(1) time for the if, the returns, and the initial assignment
to h, and O(c,) for the for loop. Here c, is the number of children
of node p.

o If initially called with the root of the tree T as p, it will eventually
be called once for each node of the tree.

o Thus, the total time taken by Aeight2 is the sum of the
nonrecursive time over all nodes of the tree.

> (1+¢)

p ET

o Thissumis 2n - 1.
o Therefore, height2 takes O(n) time.

© 2019 Shermer Trees 15

Preorder Traversal

N

o A traversal visits the nodes of a Algonthm preorder(\/)
tree in a systematic manner -
_ Visit(Vv)
o In a preorder traversal, a node is :
visited before its descendants for each child w of v
a Application: print a structured preorder (w)

document

! [Make Money Fast!]

, _— s~

[1. Motivations] [2. Methods] [References]

; /\4 6 7 8
. 2.1 Stock 2.2 Ponzi 2.3 Bank
[- (R] [L5 el] [Fraud J [Scheme J [RobberyJ

© 2010 Goodrich, Tamassia Trees 16

Preorder Print

Make Money Fast!
1. Motivations

N

Algorithm preorderPrint(v)

1.1 Greed print(v)
1.2 Avidity for each child w of v
2. Methods

preorderPrint(w)

2.1 Stock Fraud
2.2 Ponzi Scheme
2.3 Bank Robbery 1

References [Make Money Fast!]
, _/_9
[1. Motivations] [2. Methods] [References]

; /\4 6 7 8
. 2.1 Stock 2.2 Ponzi 2.3 Bank
[- (R] [L5 el] [Fraud J [Scheme J [RobberyJ

© 2019 Shermer Trees 17

Preorder Print

N

Make Money Fast! Algorithm preorderPrint(v, indent)
1. Motivations R *
L1 Groed pr!nt Indent*2 spaces
1.2 Avidity print(v)
2. Methods for each child w of v

2.1 Stock Fraud
2.2 Ponzi Scheme
2.3 Bank Robbery 1

preorderPrint(w, indent + 1)

References [Make Money Fast!]
, _/_9
[1. Motivations] [2. Methods] [References]

; /\4 6 7 8
. 2.1 Stock 2.2 Ponzi 2.3 Bank
[- (R] [L5 el] [Fraud J [Scheme J [RobberyJ

© 2019 Shermer Trees 18

Preorder Sum

N

Algorithm preorderSum(v)

PreorderSum(v)

returns the sum of sum = v.element()

the elements of the for each child w of v

subtree of v. sum = sum + preorderSum(w)
return sum

19

© 2019 Shermer Trees

Postorder Traversal

N

a In a postorder traversal, a Algorithm postorder(v)
node is visited after its :
descendants for each child w of v

a Application: compute space postorder (w)
used by files in a directory and visit(Vv)

its subdirectories

todo.txt
1K

2 4 5 6

hlc.doc hinc.doc DDR.cpp Stocks.cpp Robot.cpp
3K 2K 10K 25K 20K

© 2010 Goodrich, Tamassia Trees 20

[programs/]

Postorder Print

N

1.1 Greed Algorithm postorderPrint(v, indent)
1.2 Avidi :
vidity for each child w of v

1. Motivations)]
2.1 Stock Fraud postorderPrint(w, indent + 1)
2.2 Fonzl Schieme print indent*2 spaces
2.3 Bank Robbery i

2. Methods prlnt(v)

References 9

Make Money Fast! [Make Money Fast!]
3_/_8
[1. Motivations] [2. Methods] [References]

1/\2 4 5 6
. 2.1 Stock 2.2 Ponzi 2.3 Bank
[- (R] [L5 el] [Fraud J [Scheme J [RobberyJ

© 2019 Shermer Trees 21

Postorder Sum

N

Algorithm postorderSum(v)

PostorderSum(v)

returns the sum of sum =0

the elements of the for each child w of v

subtree of v. sum = sum + postorderSum(w)
return sum + v.element()

22

© 2019 Shermer Trees

Expression Evaluation

(Postorder)

Algorithm evaluate(v)

evaluate(v) returns if v.isExternal()

the value of the return v.element()
expression else

represented by the arglist = { }

subtree of v. for each child w of v

arglist = arglist + evaluate(w)
return apply(v.element(), arglist)

1(77] [12)2 4 5 (7.7-1.2) + (2.1 * 3.0)

© 2019 Shermer Trees 23

Expression Evaluation

(Postorder)

N

© 2019 Shermer

Trees

n7 calls n3

n3 calls nl

nl returns 7.7

n3 calls n2

n2 returns 1.2

n3 executes apply(—, {7.7, 1.2})
n3 returns 6.5

n7 calls n6

n6 calls n4

n4 returns 2.1

n6 calls n5

n5 returns 3.0

n6 executes apply(*, {2.1, 3.0})
n6 returns 6.3

n7 executes apply(+, {6.5, 6.3})
n7 returns 12.8

24

