
Iterators and Sequences 1

Iterators and
Sequences

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Sections 6.2.5 – 6.4 with an introduction
to trees

Iterators and Sequences 2

STL Containers
❑ The STL container classes are

◼ vector

◼ deque

◼ list

◼ stack

◼ queue

◼ priority queue

◼ set (and multiset)

◼ map (and multimap)

❑ Each container type C supports iterators:

◼ C::iterator – read/write iterator type

◼ C::const_iterator – read-only iterator type

◼ C.begin(), C.end() – return start/end iterators

© 2019 Shermer

Iterators and Sequences 3

STL Iterators

❑ Operators defined for iterators:

◼ *p: access current element

◼ ++p, --p: advance to next/previous element

❑ Common STL vector operations using iterators:

◼ assign(p, q): replace the vector’s contents with contents

referenced by the iterator range [p, q) (from p up to, but

not including, q)

◼ insert(p, e): insert e prior to position p

◼ erase(p): remove element at position p

◼ erase(p, q): remove elements in the iterator range [p, q)

© 2010 Goodrich, Tamassia

Iterators and Sequences 4

Using STL Iterators

❑ A common use case of iterators is to iterate through

all of the elements of a collection (for instance, a

vector).

© 2019 Shermer

int vectorSum2(vector<int> V) {

typedef vector<int>::iterator Iterator;

int sum = 0;

for (Iterator p = V.begin(); p != V.end(); ++p)

sum += *p;

return sum;

}

Iterators and Sequences 5

STL Container Algorithms
❑ STL provides algorithms that operate on general

containers. To use them, you must

#include <algorithm>

❑ In the following, p and q are iterators over a base type,
and e is an object of this base type.

◼ sort(p, q)

◼ random_shuffle(p, q)

◼ reverse(p, q)

◼ find(p, q, e)

◼ min_element(p, q)

◼ max_element(p, q)

◼ for_each(p, q, f)

© 2019 Shermer

Iterators and Sequences 6

Sequence ADT

❑ The Sequence ADT is the
union of the Vector and
List ADTs

❑ Elements accessed by

◼ Index, or

◼ Position

❑ Generic methods:

◼ size(), empty()

❑ Vector-based methods:

◼ at(i), set(i, o), insert(i, o),
erase(i)

❑ List-based methods:

◼ begin(), end()

◼ insertFront(o),
insertBack(o)

◼ eraseFront(),
eraseBack()

◼ insert (p, o), erase(p)

❑ Bridge methods:

◼ atIndex(i), indexOf(p)

© 2010 Goodrich, Tamassia

Iterators and Sequences 7

Applications of Sequences

❑ The Sequence ADT is a basic, general-
purpose data structure for storing an ordered
collection of elements

❑ Direct applications:

◼ Generic replacement for stack, queue, vector, or
list

◼ small database (e.g., address book)

❑ Indirect applications:

◼ Building block of more complex data structures

© 2010 Goodrich, Tamassia

Iterators and Sequences 8

Linked List Implementation
❑ A doubly linked list provides a

reasonable implementation of the
Sequence ADT

❑ Nodes implement Position and store:

◼ element

◼ link to the previous node

◼ link to the next node

❑ Special trailer and header nodes

trailerheader nodes/positions

elements

❑ Position-based methods
run in constant time

❑ Index-based methods
require searching from
header or trailer while
keeping track of indices;
hence, run in linear time

© 2010 Goodrich, Tamassia

Iterators and Sequences 9

Array-based Implementation

❑ We use a
circular array
storing
positions

❑ A position
object stores:
◼ Element

◼ Index

❑ Indices f and l
keep track of
first and last
positions

0 1 2 3

positions

elements

S

lf

© 2010 Goodrich, Tamassia

Iterators and Sequences 10

Comparing Sequence
Implementations

Operation Array List

size, empty 1 1

atIndex, indexOf, at 1 n

begin, end 1 1

set(p,e) 1 1

set(i,e) 1 n

insert(i,e), erase(i) n n

insertBack, eraseBack 1 1

insertFront, eraseFront n 1

insert(p,e), erase(p) n 1

© 2010 Goodrich, Tamassia

Iterators and Sequences 11

Trees

❑ A tree is a mathematical object that models
hierarchical structures and acyclic relations.

❑ A tree consists of a set of vertices (a.k.a. nodes) and
a set of edges (a.k.a. arcs).

❑ The vertices can be anything. We typically draw a
vertex as a dot, a circle, or a box.

❑ The edges are equivalent to pairs of vertices. We
typically draw an edge as a line segment between
two vertices.

❑ The tree must be connected and have no cycles.

© 2019 Shermer

Iterators and Sequences 12

Some Drawings of Trees

© 2019 Shermer

AB

C
D

E

F

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

Iterators and Sequences 13

Some Not-Trees

© 2019 Shermer

AB

C
D

E

F

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

has a cycle

has a three-
way edge

is not connected

Iterators and Sequences 14

Recursive Definition of Trees

❑ An empty vertex set is a tree
(the empty tree).

❑ A single vertex with no edges
is a tree.

❑ Any object created by
starting with a tree T,
selecting one vertex u of T,
and adding a new vertex v to
T along with the edge uv is a
tree.

© 2019 Shermer

T

u

v

Iterators and Sequences 15

Tree Terminology

❑ Two vertices that share an edge are said
to be adjacent (and are called
neighbors). Here, u and v are neighbors.

❑ The degree of a vertex is the number of
edges that include it. Here, u has
degree 4 and w has degree 1.

❑ A vertex with degree 1 is called a leaf.
Here, w is a leaf, and so are the four
unlabeled vertices.

© 2019 Shermer

uv

w

❑ The vertices with degree higher than 1 are called internal
nodes. Here, u and v are internal.

❑ The distance between two nodes is the number of edges on the
path in the tree between the nodes. Here, v and w have
distance 2.

Iterators and Sequences 16

Rooted Trees

❑ In computing, when we say
tree we often mean what
mathematicians call a rooted
tree.

❑ A rooted tree is a tree with a
special vertex called the root.

❑ Typically we draw a rooted
tree with the root at the top,
and the other vertices at a
height denoting their distance
from the root.

© 2019 Shermer

root

Iterators and Sequences 17

Rooted Tree Terminology

❑ We use family terms for the
relations amongst nodes in a
rooted tree.

❑ The parent of a node is the
neighbor that is closer to the root
(i.e. above). The root has no
parent. Other nodes have one
parent. Here the parent of v is p.

❑ A child of a node is any neighbor
that is farther from the root (i.e.
below). Here the children of v
are y and z.

© 2019 Shermer

root

v

p

y z

Iterators and Sequences 18

Rooted Tree Terminology

❑ The grandparent of a node is that
node’s parent’s parent. Here the
grandparent of v is q.

❑ A grandchild of a node is any of
the node’s children’s children.
Here v and w are the
grandchildren of q.

❑ A sibling of a node is a node that
has the same parent. Here w is a
sibling of v; we also say that v
and w are siblings.

© 2019 Shermer

root

v

p

y z

q

w

Iterators and Sequences 19

Rooted Tree Terminology

❑ The ancestors of a node v are all
nodes on the path to the root.
Here the ancestors of v are p, q,
and the root.

❑ The descendants of a node v are
all nodes whose path to the root
includes v. Here the descendants
of q are p, v, w, y, and z.

❑ Sometimes v is included in the
ancestors and descendants; be
careful which definition you work
with.

© 2019 Shermer

root

v

p

y z

q

w

Iterators and Sequences 20

Rooted Tree Terminology

❑ The subtree of a node v is a tree
that consists of v, the
descendants of v, and any tree
edges inbetween them. Here the
subtree of p is circled.

❑ The depth of a node is the
number of edges required to go
from that node to the root. Here
the depth of p is 2, and the depth
of w is 3.

© 2019 Shermer

root

v

p

y z

q

w

❑ The height of the tree is the maximum depth of any node
(here 4).

