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STL Containers
❑ The STL container classes are

◼ vector

◼ deque

◼ list

◼ stack

◼ queue

◼ priority queue

◼ set (and multiset)

◼ map (and multimap)

❑ Each container type C supports iterators:

◼ C::iterator – read/write iterator type

◼ C::const_iterator – read-only iterator type

◼ C.begin(), C.end() – return start/end iterators
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STL Iterators

❑ Operators defined for iterators:

◼ *p: access current element

◼ ++p, --p: advance to next/previous element

❑ Common STL vector operations using iterators:

◼ assign(p, q): replace the vector’s contents with contents 

referenced by the iterator range [p, q) (from p up to, but 

not including, q)

◼ insert(p, e): insert e prior to position p

◼ erase(p): remove element at position p

◼ erase(p, q): remove elements in the iterator range [p, q)

© 2010 Goodrich, Tamassia
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Using STL Iterators

❑ A common use case of iterators is to iterate through 

all of the elements of a collection (for instance, a 

vector).

© 2019 Shermer

int vectorSum2(vector<int> V) {

typedef vector<int>::iterator Iterator;

int sum = 0;

for (Iterator p = V.begin(); p != V.end(); ++p)

sum += *p;

return sum;

}



Iterators and Sequences 5

STL Container Algorithms
❑ STL provides algorithms that operate on general 

containers.  To use them, you must 

#include <algorithm>

❑ In the following, p and q are iterators over a base type, 
and e is an object of this base type.

◼ sort(p, q)

◼ random_shuffle(p, q)

◼ reverse(p, q)

◼ find(p, q, e)

◼ min_element(p, q)

◼ max_element(p, q)

◼ for_each(p, q, f)

© 2019 Shermer
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Sequence ADT

❑ The Sequence ADT is the 
union of the Vector and 
List ADTs

❑ Elements accessed by

◼ Index, or

◼ Position

❑ Generic methods:

◼ size(), empty()

❑ Vector-based methods:

◼ at(i), set(i, o), insert(i, o), 
erase(i)

❑ List-based methods:

◼ begin(), end()

◼ insertFront(o),
insertBack(o) 

◼ eraseFront(),
eraseBack()

◼ insert (p, o), erase(p)

❑ Bridge methods:

◼ atIndex(i), indexOf(p)

© 2010 Goodrich, Tamassia
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Applications of Sequences

❑ The Sequence ADT is a basic, general-
purpose data structure for storing an ordered 
collection of elements

❑ Direct applications:

◼ Generic replacement for stack, queue, vector, or 
list

◼ small database (e.g., address book)

❑ Indirect applications:

◼ Building block of more complex data structures

© 2010 Goodrich, Tamassia
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Linked List Implementation
❑ A doubly linked list provides a 

reasonable implementation of the 
Sequence ADT

❑ Nodes implement Position and store:

◼ element

◼ link to the previous node

◼ link to the next node

❑ Special trailer and header nodes

trailerheader nodes/positions

elements

❑ Position-based methods 
run in constant time

❑ Index-based methods 
require searching from 
header or trailer while 
keeping track of indices; 
hence, run in linear time

© 2010 Goodrich, Tamassia
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Array-based Implementation

❑ We use a 
circular array 
storing 
positions 

❑ A position 
object stores:
◼ Element

◼ Index

❑ Indices f and l
keep track of 
first and last 
positions

0 1 2 3

positions

elements

S

lf
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Comparing Sequence 
Implementations

Operation Array List

size, empty 1 1

atIndex, indexOf, at 1 n

begin, end 1 1

set(p,e) 1 1

set(i,e) 1 n

insert(i,e), erase(i) n n

insertBack, eraseBack 1 1

insertFront, eraseFront n 1

insert(p,e), erase(p) n 1

© 2010 Goodrich, Tamassia
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Trees

❑ A tree is a mathematical object that models 
hierarchical structures and acyclic relations.

❑ A tree consists of a set of vertices (a.k.a. nodes) and 
a set of edges (a.k.a. arcs).

❑ The vertices can be anything.  We typically draw a 
vertex as a dot, a circle, or a box.

❑ The edges are equivalent to pairs of vertices.  We 
typically draw an edge as a line segment between 
two vertices.

❑ The tree must be connected and have no cycles.

© 2019 Shermer
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Some Drawings of Trees

© 2019 Shermer
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Some Not-Trees
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Recursive Definition of Trees

❑ An empty vertex set is a tree 
(the empty tree).

❑ A single vertex with no edges 
is a tree.

❑ Any object created by 
starting with a tree T, 
selecting one vertex u of T, 
and adding a new vertex v to 
T along with the edge uv is a 
tree.

© 2019 Shermer
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Tree Terminology

❑ Two vertices that share an edge are said 
to be adjacent (and are called 
neighbors). Here, u and v are neighbors.

❑ The degree of a vertex is the number of 
edges that include it.  Here, u has 
degree 4 and w has degree 1.

❑ A vertex with degree 1 is called a leaf.  
Here, w is a leaf, and so are the four 
unlabeled vertices.

© 2019 Shermer

uv

w

❑ The vertices with degree higher than 1 are called internal 
nodes.  Here, u and v are internal.

❑ The distance between two nodes is the number of edges on the 
path in the tree between the nodes.  Here, v and w have 
distance 2.
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Rooted Trees

❑ In computing, when we say 
tree we often mean what 
mathematicians call a rooted 
tree.

❑ A rooted tree is a tree with a 
special vertex called the root.

❑ Typically we draw a rooted 
tree with the root at the top, 
and the other vertices at a 
height denoting their distance 
from the root.

© 2019 Shermer

root
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Rooted Tree Terminology

❑ We use family terms for the 
relations amongst nodes in a 
rooted tree.

❑ The parent of a node is the 
neighbor that is closer to the root 
(i.e. above).  The root has no 
parent. Other nodes have one 
parent.  Here the parent of v is p.

❑ A child of a node is any neighbor 
that is farther from the root (i.e. 
below).  Here the children of v 
are y and z.

© 2019 Shermer
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Rooted Tree Terminology

❑ The grandparent of a node is that 
node’s parent’s parent.  Here the 
grandparent of v is q.

❑ A grandchild of a node is any of 
the node’s children’s children.  
Here v and w are the 
grandchildren of q.

❑ A sibling of a node is a node that 
has the same parent.  Here w is a 
sibling of v; we also say that v 
and w are siblings.

© 2019 Shermer
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Rooted Tree Terminology

❑ The ancestors of a node v are all 
nodes on the path to the root.  
Here the ancestors of v are p, q, 
and the root. 

❑ The descendants of a node v are 
all nodes whose path to the root 
includes v.  Here the descendants 
of q are p, v, w, y, and z.  

❑ Sometimes v is included in the 
ancestors and descendants; be 
careful which definition you work 
with.

© 2019 Shermer
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Rooted Tree Terminology

❑ The subtree of a node v is a tree 
that consists of v, the 
descendants of v, and any tree 
edges inbetween them.  Here the 
subtree of p is circled.

❑ The depth of a node is the 
number of edges required to go 
from that node to the root.  Here 
the depth of p is 2, and the depth 
of w is 3.
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❑ The height of the tree is the maximum depth of any node 
(here 4).


