
Lists 1

Lists

© 2010 Goodrich, Tamassia

Section 6.2

Iterators and Sequences 2

Containers
❑ We call any data structure or ADT that

stores any collection of elements a
container.

❑ A container may contain elements in a
sequence or an unordered collection, such
as a set.

❑ However, it is assumed that the elements
of a container can be arranged in some
linear order.

© 2010 Goodrich, Tamassia

Position ADT

❑ The Position ADT models the notion of the place
within a container data structure where a single
object is stored

❑ It gives a unified view of diverse ways of storing
data, such as

◼ a cell of an array

◼ a node of a linked list

❑ Just one method:

◼ object p.element(): returns the element at position

◼ In C++ it is convenient to implement this as *p

© 2010 Goodrich, Tamassia 3Lists

Position ADT

❑ Positions are always defined with respect to
their neighbors. Unless it is the first or last
element in the container, a position q is always
“after” some position p and “before” some
position r. This is all relative to the linear
ordering we assumed for the container.

❑ A position does not change if the element moves
within the container, or if the element is
swapped or replaced by another.

❑ A position is invalidated if the element it is
associated with is explicitly removed.

© 2019 Shermer 4Lists

Iterators and Sequences 5

Iterator ADT
❑ Extends the concept of position by adding a

traversal capability

❑ An iterator abstracts the process of scanning
through a collection of elements

❑ An iterator behaves like a pointer to an element

◼ *p: returns the element referenced by this iterator

◼ ++p: advances to the next element

© 2010 Goodrich, Tamassia

Iterators and Sequences 6

Containers, refined
❑ We re(de)fine container to mean a data structure that

stores a collection of elements and that supports
element access through iterators

◼ begin(): returns an iterator to the first element

◼ end(): return an iterator to an imaginary position just after
the last element

❑ Examples include Stack, Queue, Vector, List

❑ Various notions of iterator:

◼ (standard) iterator: allows read-write access to elements

◼ const iterator: provides read-only access to elements

◼ bidirectional iterator: supports both ++p and --p

◼ random-access iterator: supports both p+i and p-i

© 2010 Goodrich, Tamassia

Iterators and Sequences 7

Iterating through a Container

❑ Let C be a container and p be an iterator for C

for (p = C.begin(); p != C.end(); ++p)

loop_body

❑ Example: (with an STL vector V)

typedef vector<int>::iterator Iterator;

int sum = 0;

for (Iterator p = V.begin(); p != V.end(); ++p)

sum += *p;

return sum;

© 2010 Goodrich, Tamassia

Iterators and Sequences 8

Implementing Iterators
❑ Array-based

◼ array A of the n elements

◼ index i that keeps track of the cursor

◼ begin() = 0

◼ end() = n (index following the last element)

❑ Linked list-based

◼ doubly-linked list L storing the elements, with sentinels
for header and trailer

◼ pointer to node containing the current element

◼ begin() = front node

◼ end() = trailer node (just after last node)

© 2010 Goodrich, Tamassia

List ADT

❑ The List ADT models
a sequence of
positions storing
arbitrary objects

❑ It establishes a
before/after relation
between positions

❑ Generic methods:

◼ size(), empty()

❑ Iterators:

◼ begin(), end()

❑ Update methods:

◼ insertFront(e),

insertBack(e)

◼ eraseFront(),

eraseBack()

❑ Iterator-based update:

◼ insert(p, e)

◼ remove(p)

© 2019 Goodrich, Tamassia,
Shermer 9Lists

List ADT

❑ The update methods are for convenience. For
example, insertFront(e) is short for
insert(L.begin(), e).

❑ An error condition occurs if an invalid iterator
is passed as an argument to an iterator-based
update method.

© 2019 Shermer 10Lists

Lists 11

Doubly Linked List
Implementation
❑ A doubly linked list provides a natural

implementation of the List ADT

❑ Nodes implement Iterator and store:

◼ element

◼ link to the previous node

◼ link to the next node

❑ Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node

© 2010 Goodrich, Tamassia

Lists 12

Insertion
❑ We visualize operation insert(p, x), which inserts x before p

a b x c

a b c

p

a b c

p

x
q

pq

© 2010 Goodrich, Tamassia

Lists 13

Insertion Algorithm

Algorithm insert(p, e): {insert e before p}

Create a new node v

v→element = e

u = p→prev

v→next = p; p→prev = v {link in v before p}

v→prev = u; u→next = v {link in v after u}

© 2010 Goodrich, Tamassia

Lists 14

Deletion
❑ We visualize remove(p)

a b c d

p

a b c

d

p

a b c

© 2010 Goodrich, Tamassia

Lists 15

Deletion Algorithm

Algorithm remove(p):

u = p→prev

w = p→next

u→next = w {linking out p}

w→prev = u

{invalidate p}

© 2010 Goodrich, Tamassia

TIMTOWTDI

❑ The text shows a doubly-linked list
implementation where there are separate
Node and Iterator classes.

❑ In this approach, the Node class remains
simple:

class Node {

Elem elem;

Node* prev;

Node* next;

};

© 2010 Goodrich, Tamassia 16Lists

TIMTOWTDI, continued

© 2010 Goodrich, Tamassia 17Lists

class Iterator {

public:

Elem& operator*();

bool operator==(const Iterator& p) const;

bool operator!=(const Iterator& p) const;

Iterator& operator++();

Iterator& operator—();

friend class NodeList;

private:

Node* v;

Iterator(Node* v);

}

The iterator class
requires a number
of its own
functions, which
would water down
Node’s interface if
the two were
combined.

NodeList class

© 2010 Goodrich, Tamassia 18Lists

void insert(const Iterator& p,

const Elem& e);

void eraseFront();

void eraseBack();

void erase(const Iterator& p);

// …

private:

int n;

Node* header;

Node* trailer;

};

The NodeList class includes the Node class and the
Iterator class as nested classes.

class NodeList {

private:

// insert Node declaration here

public:

// insert Iterator declaration here

NodeList();

int size() const;

bool empty() const;

Iterator begin() const;

Iterator end() const;

void insertFront(const Elem& e);

void insertBack(const Elem& e);

NodeList class

© 2010 Goodrich, Tamassia 19Lists

The implementation of the Iterator must refer to the
Iterator as NodeList::Iterator.

NodeList::Iterator::Iterator(Node* u)

{ v = u; }

Elem& NodeList::Iterator::operator*()

{ return v->elem; }

bool NodeList::Iterator::operator==(const Iterator& p) const

{ return v == p.v; }

NodeList::Iterator& NodeList::Iterator::operator++()

{ v = v->next; return *this}

// (operator!= and operator-- are similar)

Performance

❑ In the implementation of the List ADT by
means of a doubly linked list

◼ The space used by a list with n elements is
O(n)

◼ The space used by each position of the list is
O(1)

◼ All the operations of the List ADT run in O(1)

time

◼ Operation element() of the
Position ADT runs in O(1) time

© 2010 Goodrich, Tamassia 20Lists

