
Array Lists 1

Array Lists

© 2019 Shermer, based on 
Goodrich, Tamassia, Mount

Section 6.1



Array Lists 2

Lists (Sequences)

❑ A list or sequence is a collection of elements stored in a 

linear order, so we can refer to the elements as first, 

second, third, etc.

❑ The index of an element in a list is the number of 

elements before it.  The rank of an element is one more 

than its index.

❑ Computer languages, because it is more natural for the 

compiler, mostly use index rather than rank for accessing 

list or array elements.

❑ A sequence that allows access to its elements by their 

indices is called a vector or array list.

© 2019 Shermer



Array Lists 3

The Array List ADT

❑ The Vector or Array List

ADT extends the notion 

of array by storing a 

sequence of objects

❑ An element can be 

accessed, inserted or 

removed by specifying 

its index

❑ An exception is thrown 

if an incorrect index is 

given (e.g., a negative 

index)

❑ Main methods:

◼ at(integer i): returns the element 
at index i without removing it

◼ set(integer i, object o): replace 
the element at index i with o

◼ insert(integer i, object o): insert a 
new element o to have index i

◼ erase(integer i): removes element 
at index i

❑ Additional methods:

◼ size()

◼ empty()

© 2010 Goodrich, Tamassia



Array Lists 4

Applications of Array Lists

❑ Direct applications

◼ Sorted collection of objects (elementary 
database or dictionary)

❑ Indirect applications

◼ Auxiliary data structure for algorithms

◼ Component of other data structures

© 2010 Goodrich, Tamassia



Array Lists 5

Array-based Implementation

❑ Use an array A of size N

❑ A variable n keeps track of the size of the array list 

(number of elements stored)

❑ Operation at(i) is implemented in O(1) time by 
returning A[i]

❑ Operation set(i,o) is implemented in O(1) time by 
performing A[i] = o

A

0 1 2 ni

© 2010 Goodrich, Tamassia



Array Lists 6

Insertion

❑ In operation insert(i, o), we need to make room 
for the new element by shifting forward the n - i
elements A[i], …, A[n - 1]

❑ In the worst case (i = 0), this takes O(n) time

A

0 1 2 ni

A

0 1 2 ni

A

0 1 2 n

o

i

© 2010 Goodrich, Tamassia



Array Lists 7

Element Removal

❑ In operation erase(i), we need to fill the hole left by the 
removed element by shifting backward the n - i - 1
elements A[i + 1], …, A[n - 1]

❑ In the worst case (i = 0), this takes O(n) time

A

0 1 2 ni

A

0 1 2 n

o

i

A

0 1 2 ni

© 2010 Goodrich, Tamassia



Array Lists 8

Algorithms Insert and Erase

❑ n is a member variable that stores the number 
of elements in the ArrayList.

❑ An implementation of insert() should start by 
throwing an exception if the array A is full.  This 
has been considered an implementation detail 
and left out of the algorithm. 

© 2019 Shermer

Algorithm insert(i, e)

for j  n - 1 downto i do

A[j+1]  A[j]

A[i]  e

n  n + 1

Algorithm erase(i)

for j  i+1 to n - 1 do

A[j - 1]  A[j]

n  n - 1



Array Lists 9

Performance

❑ In the array-based implementation of an array list:

◼ The space used by the data structure is O(1)

◼ size, empty, at and set run in O(1) time 

◼ insert and erase run in O(n) time in the worst case

◼ constrained by initial capacity of array 

❑ In a linked-list-based implementation of an array list:

◼ The space used by the data structure is O(n)

◼ size and empty run in O(1) time

◼ at, set, insert, and erase run in O(n) time

◼ no size constraint

© 2019 Goodrich, Tamassia, 
Shermer



Array Lists 10

Performance

❑ If we use the array in a circular fashion, 
operations insert(0, x) and erase(0, x) run in 
O(1) time.

❑ We’d like to have the faster at and set of the 
array-based implementation, without the size 
constraint.

❑ This is possible using an extendable array,
which brings our space cost to O(n).

© 2019 Shermer



Array Lists 11

Extendable Array 
❑ An operation that accesses 

an index past the size of 
the array is called an 
overflow.

❑ When we get an overflow, 
we replace the array with 
a larger one.

❑ How large should the new 
array be?
◼ Incremental strategy: 

increase the size by a 
constant c

◼ Doubling strategy: double 
the size

Algorithm handleOverflow

S  new array of

size …

for i  0 to n-1 do

S[i]  A[i]

A  S

© 2010 Goodrich, Tamassia

Algorithm insert(i, e)

if n = A.length - 1 then

handleOverflow( )

for j  n-1 downto i do

A[j + 1]  A[j]

A[i]  e

n  n + 1



Array Lists 12

Comparison of the Strategies

❑ We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(k) needed to perform a series of k
insert(n, e) operations

❑ We assume that we start with an empty 
array of size 1

❑ The amortized time of an insert operation is 
the average time taken by an insert over the 
series of operations, i.e.,  T(k)/k

© 2010 Goodrich, Tamassia



Array Lists 13

Incremental Strategy Analysis 

❑ We replace the array m = k/c times

❑ The total time T(k) of a series of k insert 
operations is proportional to

k + c + 2c + 3c + 4c + … + mc =

k + c(1 + 2 + 3 + … + m) =

k + cm(m + 1)/2

❑ Since c is a constant, T(k) is O(k + m2), i.e., 
O(k2)

❑ The amortized time of an insert operation is 
O(k)

© 2010 Goodrich, Tamassia



Array Lists 14

Doubling Strategy Analysis

❑ We replace the array m = log2 k 

times

❑ The total time T(k) of a series of k

insert operations is proportional to

k + 1 + 2 + 4 + 8 + …+ 2m =

k + 2m + 1 - 1 = 

3k - 1

❑ T(k) is O(k)

❑ The amortized time of an insert 
operation is O(1)

geometric series

1

2

1
4

8

© 2010 Goodrich, Tamassia



Array Lists 15

Implementing Vector with an 
Extendable Array

© 2019 Shermer

typedef int Elem;

class ArrayVector {

public:

ArrayVector();

int size() const;

bool empty() const;

Elem& operator[ ](int i);

Elem& at(int i)          

throw(IndexOutOfBounds);

void erase(int i);

void insert(int I, const Elem& e);

void reserve(int N);

// …

private:

int capacity;

int n;

Elem* A;

}

ArrayVector::ArrayVector()

: capacity(0), n(0), A(NULL) { }

int ArrayVector::size() const

{ return n; }

bool ArrayVector::empty() const

{ return size() == 0; }



Array Lists 16

Implementing Vector with an 
Extendable Array

© 2019 Shermer

Elem& ArrayVector::operator[](int i)

{ return A[i]; }

Elem& ArrayVector:at(int i)

throw(IndexOutOfBounds) {

if (i < 0 || i >= n)

throw IndexOutOfBounds(“…”);

return A[i];

}

void ArrayVector::erase(int i) {

for (int j=i+1; j<n; j++)

A[j-1] = A[j];

n--;

}

void ArrayVector::reserve(int N) {

if(capacity >= N) return;

Elem* B = new Elem[N];

for (int j=0; j<n; j++)  {

B[j] = A[j];

}

if (A != NULL)

delete [ ] A

A = B;

capacity = N;

}



Array Lists 17

Implementing Vector with an 
Extendable Array

© 2019 Shermer

void ArrayVector::insert(int i, const Elem& e) {

if (n >= capacity)

reserve(max(1, 2 * capacity));

for (int j = n-1; j >= i; j--) {

A[j+1] = A[j];

}

A[i] = e;

n++;

}



Array Lists 18

STL vectors

❑ STL has a class vector.

❑ STL vectors are a type of container, which is a 
data structure that is used to hold a collection 
of objects.

❑ STL vectors provide all of the operations 
ArrayVector provided, along with push_back(e) 
and pop_back().

❑ STL vectors also provide many other auxiliary 
functions.

❑ When destroyed, an STL vector will destroy all 
objects it contains.

© 2019 Shermer


