
Queues and Deques 1

Queues and Deques

© 2019 Shermer, based on
Goodrich, Tamassia, Mount

Sections 5.2 to 5.3.3

Queues and Deques 2

The Queue ADT
❑ The Queue ADT stores arbitrary

objects

❑ Insertions and deletions follow
the first-in first-out (FIFO)
scheme

❑ Insertions are at the rear of the
queue and removals are at the
front of the queue

❑ Main queue operations:

◼ enqueue(object): inserts an
element at the end of the
queue

◼ dequeue(): removes the
element at the front of the
queue

❑ Auxiliary queue
operations:
◼ object front(): returns the

element at the front without
removing it

◼ integer size(): returns the
number of elements stored

◼ boolean empty(): indicates
whether no elements are
stored

❑ Exceptions
◼ Attempting the execution of

dequeue or front on an
empty queue throws an
QueueEmpty

© 2010 Goodrich, Tamassia

Queues and Deques 3

Example
Operation Output Q

enqueue(5) – (5)

enqueue(3) – (5, 3)

dequeue() – (3)

enqueue(7) – (3, 7)

dequeue() – (7)

front() 7 (7)

dequeue() – ()

dequeue() “error” ()

empty() true ()

enqueue(9) – (9)

enqueue(7) – (9, 7)

size() 2 (9, 7)

enqueue(3) – (9, 7, 3)

enqueue(5) – (9, 7, 3, 5)

dequeue() – (7, 3, 5)

© 2010 Goodrich, Tamassia

Queues and Deques 4

Queue Interface

❑ Pseudo-C++
interface
corresponding to
our Queue ADT

❑ Uses an exception
class QueueEmpty

❑ Different from the
built-in C++ STL
class queue

template <typename E>

class Queue {

public:

int size() const;

bool empty() const;

const E& front() const

throw(QueueEmpty);

void enqueue (const E& e);

void dequeue()

throw(QueueEmpty);

};

© 2010 Goodrich, Tamassia

Queues and Deques 5

STL queue class

❑ The Standard Template Library (STL) provides
an implementation of a queue.

❑ To declare a queue of floats:
#include <queue>

std::queue<float> myQueue;

❑ STL’s queue interface is similar to the previous one, but

◼ enqueue is called push and dequeue is called pop.

◼ There is an extra function back which returns the element at
the back of the queue without removing it.

◼ Executing pop, front, or back on an empty queue results in
undefined behavior.

© 2019 Shermer

Queues and Deques 6

Array-based Queue
❑ Use an array of size N in a circular fashion

❑ Three variables keep track of the front and rear
f index of the front element

r index immediately past the rear element

n number of items in the queue

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

© 2010 Goodrich, Tamassia

Queues and Deques 7

Queue Operations

❑ Use n to
determine size
and emptiness

Algorithm size()

return n

Algorithm empty()

return (n = 0)

Q

0 1 2 rf

Q

0 1 2 fr

© 2010 Goodrich, Tamassia

Queues and Deques 8

Queue Operations (cont.)
Algorithm enqueue(o)

if size() = N then

throw QueueFull

else

Q[r]  o

r  (r + 1) mod N

n  n + 1

❑ Operation enqueue
throws an exception if
the array is full

❑ This exception is
implementation-
dependent

Q

0 1 2 rf

Q

0 1 2 fr

© 2010 Goodrich, Tamassia

Queues and Deques 9

Queue Operations (cont.)

❑ Operation dequeue
throws an exception
if the queue is empty

❑ This exception is
specified in the
queue ADT

Algorithm dequeue()

if empty() then

throw QueueEmpty

else

f  (f + 1) mod N

n  n − 1

Q

0 1 2 rf

Q

0 1 2 fr

© 2010 Goodrich, Tamassia

Queues and Deques 10

Performance and Limitations

❑ Performance

◼ Let n be the number of elements in the queue

◼ The space used is at least n

◼ Each operation runs in time O(1)

❑ Limitations

◼ The maximum size of the queue must be defined
a priori and cannot be changed

◼ Trying to enqueue an element into a full queue
causes an implementation-specific exception

© 2019 Shermer

Queues and Deques 11

Linked List-based Queue
❑ We can implement a queue with a singly linked list

◼ The front element is stored at the first node

◼ The rear element is stored at the last node

❑ The space used is O(n) and each operation of the
Queue ADT takes O(1) time

❑ No restrictions on the number of elements.

f

r



elements

Queues and Deques 12

Applications of Queues

❑ Direct applications

◼ Waiting lists, bureaucracy

◼ Access to shared resources (e.g., printer)

◼ Multiprogramming

❑ Indirect applications

◼ Auxiliary data structure for algorithms

◼ Component of other data structures

© 2010 Goodrich, Tamassia

Queues and Deques 13

Application: Round Robin Schedulers

❑ We can implement a round robin scheduler using a
queue Q by repeatedly performing the following
steps:

1. e = Q.front(); Q.dequeue()

2. Service element e

3. Q.enqueue(e)

© 2010 Goodrich, Tamassia

Shared
Service

Queue

EnqueueDequeue

Queues and Deques 14

The Deque ADT
❑ The Deque (double-ended

queue) ADT stores arbitrary
objects

❑ Insertions and deletions can
happen at either the front or the
back

❑ Main dequeue operations:

◼ insertFront(object): inserts an
element at the front of the
deque

◼ insertBack(object): inserts an
element at the back of the
deque

◼ eraseFront(): removes the
element at the front of the
deque

◼ eraseBack(): removes the
element at the back of the
deque

❑ Auxiliary deque
operations:
◼ object front(): returns the

element at the front without
removing it

◼ object back(): returns the
element at the back without
removing it

© 2019 Shermer

Queues and Deques 15

The Deque ADT (continued)
◼ integer size(): returns the

number of elements stored

◼ boolean empty(): indicates
whether no elements are
stored

❑ Exceptions
◼ Attempting the execution of

eraseFront, eraseBack, front,
or back an empty deque
throws a DequeEmpty

© 2019 Shermer

Queues and Deques 16

STL deque class

❑ The Standard Template Library (STL) provides
an implementation of a deque.

❑ To declare a deque of strings:
#include <deque>

std::deque<string> myDeque;

❑ STL’s deque interface is similar to the previous one, but

◼ insertFront, insertBack, eraseFront, and eraseBack are called
push_front, push_back, pop_front, and pop_back, respectively.

◼ Executing pop_front, pop_back, front, or back on an empty
deque results in undefined behavior.

© 2019 Shermer

Queues and Deques 17

Deque Interface for Doubly-
Linked List Implementation

void removeFront()

throw(DequeEmpty);

void removeBack()

throw(DequeEmpty);

private:

DLinkedList D;

int n;

};

© 2019 Shermer

template <typename E>

class LinkedDeque {

public:

LinkedDeque();

int size() const;

bool empty() const;

const E& front() const

throw(DequeEmpty);

const E& back() const

throw(DequeEmpty);

void insertFront(const E& e);

void insertBack(const E& e);

